留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒸氨法制备Ni/SiO2催化剂及其在2-MF加氢制2-MTHF反应中的应用

王英文 张雅静 王康军 谈立美 陈姝颖

王英文, 张雅静, 王康军, 谈立美, 陈姝颖. 蒸氨法制备Ni/SiO2催化剂及其在2-MF加氢制2-MTHF反应中的应用[J]. 燃料化学学报(中英文), 2021, 49(1): 97-103. doi: 10.1016/S1872-5813(21)60007-5
引用本文: 王英文, 张雅静, 王康军, 谈立美, 陈姝颖. 蒸氨法制备Ni/SiO2催化剂及其在2-MF加氢制2-MTHF反应中的应用[J]. 燃料化学学报(中英文), 2021, 49(1): 97-103. doi: 10.1016/S1872-5813(21)60007-5
WANG Ying-wen, ZHANG Ya-jing, WANG Kang-jun, TAN Li-mei, CHEN Shu-ying. Preparation of Ni/SiO2 by ammonia evaporation method for synthesis of 2-MTHF from 2-MF hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 97-103. doi: 10.1016/S1872-5813(21)60007-5
Citation: WANG Ying-wen, ZHANG Ya-jing, WANG Kang-jun, TAN Li-mei, CHEN Shu-ying. Preparation of Ni/SiO2 by ammonia evaporation method for synthesis of 2-MTHF from 2-MF hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 97-103. doi: 10.1016/S1872-5813(21)60007-5

蒸氨法制备Ni/SiO2催化剂及其在2-MF加氢制2-MTHF反应中的应用

doi: 10.1016/S1872-5813(21)60007-5
基金项目: 辽宁省自然科学基金(2019-ZD-0077),辽宁省兴辽英才计划(XLYC1907029),辽宁省教育厅项目(LQ2020026,LZ2019003)和辽宁省高等学校创新人才支持计划资助
详细信息
    通讯作者:

    Tel:024-89383902,E-mail:yjzhang2009@163.com

    angle_79@163.com

  • 中图分类号: TQ 426, O643.36

Preparation of Ni/SiO2 by ammonia evaporation method for synthesis of 2-MTHF from 2-MF hydrogenation

Funds: The project was supported by National Natural Science Foundation of Liaoning Province (2019-ZD-0077), Liaoning Revitalization Talents Program (XLYC1907029), Science Research Foundation of Education Department of Liaoning Province (LQ2020026, LZ2019003), and Liaoning Innovation Talents Program in University
  • 摘要: 以硝酸镍为镍源,碱性硅溶胶为硅源,采用蒸氨法制备了Ni/SiO2催化剂。通过XRD、N2等温吸附脱附、H2-TPR、NH3-TPD、XPS和TG对催化剂进行表征。采用固定床反应器,考察了催化剂焙烧温度及反应条件对催化剂应用于2-甲基呋喃(2-MF)气相加氢合成2-甲基四氢呋喃(2-MTHF)的反应性能。结果表明,蒸氨法制备的Ni/SiO2催化剂在焙烧后均呈现层状硅酸镍结构,还原后保持了该结构,活性组分Ni晶粒尺寸较小、金属载体相互作用较强,从而具有较高的活性。催化剂的焙烧温度影响催化剂Ni晶粒尺寸及催化剂的表面酸性。在500 ℃焙烧条件下制备的催化剂性能最佳,优化反应条件下,2-MF转化率100%,2-MTHF选择性为93.5%,反应15 h内催化性能稳定;含碳的有机物在催化剂表面沉积是催化剂失活的主要原因。
  • 图  1  不同焙烧温度制备的Ni/SiO2催化剂的N2吸附-脱附等温线(a)和BJH孔径分布(b)

    Figure  1  N2 adsorption-desorption isotherms (a) and BJH pore size distributions (b) of Ni/SiO2 catalysts

    图  2  不同焙烧温度制备的Ni/SiO2催化剂的XRD谱图

    Figure  2  XRD patterns of Ni/SiO2 catalysts prepared at different calcination temperatures

    (a): after calcination; (b): after reduction

    图  3  不同焙烧温度制备的Ni/SiO2催化剂的H2-TPR谱图

    Figure  3  H2-TPR profiles of Ni/SiO2 catalysts prepared at different calcination temperatures

    图  4  不同焙烧温度制备的Ni/SiO2催化剂的NH3-TPD谱图

    Figure  4  NH3-TPD profiles of Ni/SiO2 catalysts prepared at different calcination temperatures

    图  5  不同焙烧温度制备的Ni/SiO2催化剂的性能

    Figure  5  Catalytic performance of Ni/SiO2 catalysts prepared at different calcination temperatures

    图  6  Ni/SiO2催化剂的稳定性

    Figure  6  Stability of Ni/SiO2 catalyst (performance vs. time on stream)

    图  7  Ni/SiO2催化剂的XRD谱图

    Figure  7  XRD patterns of Ni/SiO2 catalysts

    a: after reduction; b: after use

    图  8  Ni/SiO2催化剂的热失重曲线

    Figure  8  TG curves of the Ni/SiO2 catalysts

    表  1  不同焙烧温度制备的Ni/SiO2催化剂的比表面积、孔容和孔径

    Table  1  Specific surface area, pore volume and pore sizes of different catalysts

    Catalysts calcinationSBET /(m2·g−1)v /(cm3·g−1)d /nm
    400 ℃391.10.5103.9
    500 ℃346.70.6413.7
    600 ℃345.60.4623.9
    700 ℃296.10.4865.0
    下载: 导出CSV

    表  2  不同焙烧温度制备的Ni/SiO2催化剂的酸量

    Table  2  Total acidity amount of different catalysts

    Catalysts calcination400 ℃500 ℃600 ℃700 ℃
    Total acidity /(mmol $({\rm{NH} }_3)\cdot {\rm{g} }_{\rm{cat} }^{-1}$)0.5190.4110.4080.369
    下载: 导出CSV

    表  3  不同反应条件下催化剂的催化性能

    Table  3  Catalytic performance of Ni/SiO2 catalyst under different reaction conditions

    p/MPaH2/2-MF(molar ratio)LHSV/h−1t/℃x(2-MF)/% Selectivity s/%
    2-MTHF2-pentanolamyl alcoholothers
    1.25.41.612010088.16.34.41.2
    1.65.41.612010089.55.93.80.8
    2.05.41.612010090.97.11.50.5
    1.62.71.612010089.16.82.71.4
    1.610.71.612010092.74.12.11.1
    1.613.71.612010093.73.51.90.9
    1.616.11.612010091.24.72.41.7
    1.613.72.712010089.95.43.21.5
    1.613.74.912010090.66.11.81.5
    1.613.74.911010086.27.94.41.5
    1.613.74.912010089.57.12.80.6
    1.613.74.914010094.13.41.80.7
    1.613.74.916010095.32.61.70.4
    1.613.74.918010093.14.11.90.9
    下载: 导出CSV

    表  4  Ni/SiO2催化剂表面原子百分比

    Table  4  Atom ratio on the surface of Ni/SiO2 catalysts

    AtomAfter reduction /%After use /%
    C9.1026.76
    O57.3548.62
    Ni7.334.30
    SiO226.2220.31
    下载: 导出CSV
  • [1] 郭清泉, 陈焕钦. 乙酰丙酸及其衍生物的研究进展[J]. 精细石油化工,2003,20(3):45−48. doi: 10.3969/j.issn.1003-9384.2003.03.016

    GUO Qing-quan, CHEN Huan-qin. Development on prepartion of levulinic acid and its derivatives[J]. Spec Petrochem,2003,20(3):45−48. doi: 10.3969/j.issn.1003-9384.2003.03.016
    [2] RAGAN J A, ENDE D J, BRENEK S J, EISENBEIS S A, SINGER R A, TICKNER D L, TEIXEIRA J J, VANDERPLAS B C, WESTONET N. Safe execution of a large-scale ozonolysis: Preparation of the bisulfite adduct of 2-hydroxyindan-2-carboxaldehyde and its utility in a reductive amination[J]. Org Process Res Dev,2003,7(2):155−160. doi: 10.1021/op0202235
    [3] YANG J, ZHENG H, ZHU Y, ZHAO G, ZHANG C, TENG B, XIANG H, LI Y. Effects of calcination temperature on performance of Cu-Zn-Al catalyst for synthesizing c-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation[J]. Catal Commun,2004,5(9):505−510. doi: 10.1016/j.catcom.2004.06.005
    [4] 辛炳炜, 曲立强, 孙昌俊. 2-甲基四氢呋喃的制备研究进展[J]. 山东化工,2003,32:13−15.

    XIN Bing-wei, QU Li-qiang, SUN Chang-jun. Progress on synthesis of Effect of 2-methytetrahydrofuran[J]. Shangdong Chem Ind,2003,32:13−15.
    [5] DONALD B D, DOROTHY Z D, JOHN J G. Cyclodehydration of 1, 4-butanediols by pentaethoxy-phosphorane[J]. J Org Chem,1984,49:2831−2832. doi: 10.1021/jo00189a044
    [6] SANEO J, FUKUMOTO T, NAKAO K. Cyclic ethers from lactones, Japan: 7333745 [P].
    [7] DONG F, ZHU Y, DING G. One-step conversion of furfural into 2-methyltetrahydrofuran under mild conditions[J]. Chem Sus Chem,2015,8(9):1534−1537. doi: 10.1002/cssc.201500178
    [8] MASAAKI Y, RYOZI H. Preparation of dihydropyran from furfural[J]. Kôgakuin Daigaku Kenkyû Hôkoku,1954,1:76.
    [9] PROSKURYAKOV V A, IVANOV P A, GENUSOV M L. Hydrogenation of furfural under pressure[J]. Trudy Leningrad Tekhnol Inst Im Lensoveta,1958,44:3−5.
    [10] 李增杰, 黄玉辉, 朱明. Ni/Al2O3催化2-甲基呋喃加氢制2-甲基四氢呋喃性能的研究[J]. 燃料化学学报,2018,46(1):54−58. doi: 10.3969/j.issn.0253-2409.2018.01.007

    LI Zeng-jie, HUANG Yu-hui, ZHU Ming. Catalytic performance of Ni/Al2O3 catalyst for hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran[J]. J Fuel Chem Technol,2018,46(1):54−58. doi: 10.3969/j.issn.0253-2409.2018.01.007
    [11] DING F, ZHANG Y. Synthesis and catalytic performance of Ni/SiO2 for hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran[J]. J Nanomater,2015.
    [12] ASHOK J, KATHIRASER Y, ANG M L, KAWI S. Ni and/or Ni-Cu alloys supported over SiO2 catalysts synthesized via phyllosilicate structures for steam reforming of biomass tar reaction[J]. Catal Sci & Technol,2015,5:4398−4409.
    [13] ZHANG H, GAO X, MA Y, HAN X, NIU L, BAI G. A highly dispersed and stable Ni/mSiO2-AE nanocatalyst for benzoic acid hydrogenation[J]. Catal Sci Technol,2017,7:5993−5999.
    [14] THOMMES M, KANEKO K, NEIMARK A V. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem,2015,87(9/10):1051−1069. doi: 10.1515/pac-2014-1117
    [15] CYCHOSZ K A, NICOLAS R G, MARTNEZ J G. Recent advances in the textural characterization of hierarchically structured nanoporous materials[J]. Chem Soc Rev,2017,46:389−414. doi: 10.1039/C6CS00391E
    [16] CHEN L, GUO P, QIAO M. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal,2008,257(1):172−180. doi: 10.1016/j.jcat.2008.04.021
    [17] KONG X, ZHU Y, ZHENG H. Ni Nanoparticles Inlaid Nickel Phyllosilicate as a metal-acid bifunctional catalyst for low-temperature hydrogenolysis reactions[J]. ACS Catal,2015,5:5914−5920. doi: 10.1021/acscatal.5b01080
    [18] DONG F, DING G, ZHENG H. Highly dispersed Cu nanoparticles as an efficient catalyst for the synthesis of the biofuel 2-methylfuran[J]. Catal Sci Technol,2016,6:767−779. doi: 10.1039/C5CY00857C
    [19] LI Z, MO L, KATHIRASER Y. Yolk-Satellite-Shell structured Ni-Yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction[J]. ACS Catal,2014,4(5):1526−1536. doi: 10.1021/cs401027p
    [20] SUN K Q, MARCEAU E, CHE M. Evolution of nickel speciation during preparation of Ni-SiO2 catalysts: Effect of the number of chelating ligands in [Ni(en)x(H2O)6−2x]2+ precursor complexes[J]. Phys Chem Chem Phys,2006,8(14):1731−1738. doi: 10.1039/b513319j
    [21] ZHANG C, ZHU W, LI S. Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect[J]. Chem Commun,2013,49:9383−9385. doi: 10.1039/c3cc43895c
    [22] BURATTIN P, CHE M, LOUIS C. Ni/SiO2 Materials prepared by deposition-precipitation: Influence of the reduction conditions and mechanism of formation of metal particles[J]. J Phys Chem B,2000,104(45):10482−10489. doi: 10.1021/jp0003151
    [23] 刘吉, 王东旭, 肖显斌. 焙烧温度对Ni/γ-Al2O3还原条件及催化甲苯水蒸气重整反应的影响[J]. 燃料化学学报,2014,42(10):1225−1232. doi: 10.3969/j.issn.0253-2409.2014.10.011

    LIU Ji, WANG Dong-xu, XIAO Xian-bin. Effect of calcination temperature on Ni/γ-Al2O3 reduction and catalytic steam reforming of toluene[J]. J Fuel Chem Technol,2014,42(10):1225−1232. doi: 10.3969/j.issn.0253-2409.2014.10.011
    [24] GILKEY M J, PANAGIOTOPOULOU P, MIRONENKO A V, JENNESS G R, VALCHOS DG, XU B[J]. ACS Catal, 2015, 5: 3988-3994.
    [25] SELVAM P, VISWANNATHAN B, SRINIVASAN V. XPS studies of the surface properties of CaNi5[J]. J Electron Spectrosc Relat Phemon,1989,49:203−211. doi: 10.1016/0368-2048(89)85009-1
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  673
  • HTML全文浏览量:  126
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-18
  • 修回日期:  2020-11-11
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回