留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2/CH4/N2在MER型沸石中扩散和分离的分子动力学模拟

石勤

石勤. CO2/CH4/N2在MER型沸石中扩散和分离的分子动力学模拟[J]. 燃料化学学报(中英文), 2021, 49(10): 1531-1539. doi: 10.1016/S1872-5813(21)60095-6
引用本文: 石勤. CO2/CH4/N2在MER型沸石中扩散和分离的分子动力学模拟[J]. 燃料化学学报(中英文), 2021, 49(10): 1531-1539. doi: 10.1016/S1872-5813(21)60095-6
SHI Qin. Molecular dynamics simulation of diffusion and separation of CO2/CH4/N2 on MER zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1531-1539. doi: 10.1016/S1872-5813(21)60095-6
Citation: SHI Qin. Molecular dynamics simulation of diffusion and separation of CO2/CH4/N2 on MER zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1531-1539. doi: 10.1016/S1872-5813(21)60095-6

CO2/CH4/N2在MER型沸石中扩散和分离的分子动力学模拟

doi: 10.1016/S1872-5813(21)60095-6
基金项目: 甘肃省高等学校创新基金项目(2021B-390)
详细信息
    通讯作者:

    Tel: 13919793232, E-mail: 877415710@qq.com

  • 中图分类号: TQ021.4

Molecular dynamics simulation of diffusion and separation of CO2/CH4/N2 on MER zeolites

Funds: The project was supported by Innovation Fund of Colleges and Universities of Gansu (2021B-390)
  • 摘要: 采用巨正则蒙特卡洛(GCMC)模拟方法研究了CO2、CH4和N2在MER型沸石中的吸附性能,模拟结果与实验结果吻合证明模型和力场是可靠的。在此基础上,以纯硅MER型沸石作为对照,采用分子动力学(MD)模拟方法研究了CO2、CH4和N2在K-MER型沸石中的扩散和分离性能。结果表明,CO2、CH4和N2在MER型沸石中存在亚扩散现象,扩散方式为构型扩散,在沸石三维通道中的扩散存在各向异性。沸石与气体之间的作用力和沸石骨架外阳离子均影响气体分子的扩散能力,而沸石骨架外阳离子是影响气体分子扩散能力的主要因素。CO2和N2的自扩散系数随吸附浓度的增加而减小;CH4的自扩散系数随吸附浓度的增大先增加后减小。CO2、CH4和N2的自扩散系数随温度的升高均增加,扩散活化能大小顺序为N2 (16.51 kJ/mol) > CH4 (8.39 kJ/mol) > CO2 (4.38 kJ/mol)。K-MER型沸石膜对CO2/CH4、CO2/N2和N2/CH4分离体系均有良好的分离选择性。气体分子的渗透率~104 GPU(1 GPU = 3.35×10−10 mol/(s·m2·Pa))。
  • FIG. 972.  FIG. 972.

    FIG. 972.  FIG. 972.

    图  1  混合气体分离模型

    Figure  1  Schematic diagram of mixed gas in separation model

    图  2  不同模拟时间下N2在纯硅MER型沸石中的MSD与时间的关系

    Figure  2  MSD of N2 on silicon MER zeolite versus time at different simulated time at 298 K

    图  3  CO2、CH4和N2在K-MER与纯硅MER型沸石中的吸附等温线

    Figure  3  Adsorption isotherms for CO2, CH4 and N2 on K-MER and silicon MER zeolites at 298 K

    图  4  CO2、CH4和N2在K-MER与纯硅MER型沸石中的等量吸附热

    Figure  4  Adsorption heat for CO2, CH4 and N2 on K-MER and silicon MER zeolites at 298 K

    图  5  CO2、CH4和N2在纯硅MER(a)与K-MER(b)型沸石中的均方位移与时间的关系

    Figure  5  MSD of CO2, CH4 and N2 on silicon MER (a) and K-MER (b) zeolites versus time at 298 K

    图  6  纯硅MER型沸石八元环窗口孔径

    Figure  6  Octet ring window aperture of silicon MER zeolite

    图  7  K-MER型沸石骨架原子与骨架外K+之间的径向分布函数

    Figure  7  Radial distribution function between the framework atoms and extra-framework K+ of K-MER zeolite

    图  8  CO2、CH4和N2在K-MER型沸石中自扩散系数与浓度的关系

    Figure  8  Loading dependence of self-diffusion coefficients for CO2, CH4 and N2 on K-MER zeolites at 298 K

    图  9  CO2、CH4和N2在K-MER型沸石中自扩散系数与温度的关系

    Figure  9  Temperature dependence of self-diffusion coefficients for CO2, CH4 and N2 on K-MER zeolites

    图  10  穿透分子数随时间的变化

    Figure  10  Number of permeation molecules versus time

    图  11  MD模拟5 ns后混合气体穿过沸石膜的快照

    Figure  11  Snapshot of mixed gas permeating through zeolite membrane after a MD simulation time of 5 ns

    表  1  CO2、CH4和N2在MER型沸石中的自扩散系数

    Table  1  Self-diffusion coefficient of CO2, CH4 and N2 on MER zeolites at 298 K

    AdsorbateDSi-MER/(10−12 m2·s−1)DK-MER/(10−12 m2·s−1)
    totalxyztotalxyz
    CO2132.1822.453.40106.1812.376.101.784.48
    CH4170.9200170.922.152.1500
    N2218.1828.2818.70171.185.905.7500.10
    下载: 导出CSV
  • [1] 鲁雪婷, 蒲彦锋, 李磊, 赵宁, 王峰, 肖福魁. 氨基修饰的金属有机框架Cu3(BTC)2的制备及其CO2吸附性能研究[J]. 燃料化学学报,2019,47(3):338−343. doi: 10.1016/S1872-5813(19)30016-7

    LU Xue-ting, PU Yan-feng, LI Lei, ZHAO Ning, WANG Feng, XIAO Fu-kui. Preparation of metal-organic frameworks Cu3(BTC)2 with amino-functionalization for CO2 adsorption[J]. J Fuel Chem Technol,2019,47(3):338−343. doi: 10.1016/S1872-5813(19)30016-7
    [2] 贾晓霞, 杨江峰, 王勇, 李晋平. 纳米多孔石墨烯膜分离N2/CH4的密度泛函计算与分子动力学模拟[J]. 石油学报(石油加工),2018,34(6):1247−1254.

    JIA Xiao-xia, YANG Jiang-feng, WANG Yong, LI Jin-ping. Density functional theory and molecular dynamic simulation of N2/CH4 separation over nanoporous graphene membranes[J]. Acta Pet Sin (Pet Process Sect),2018,34(6):1247−1254.
    [3] WANG B, WU T Y, YU M, LI S G, ZHOU R F, XING W H. Highly ordered nanochannels in a nanosheet‐directed thin zeolite nanofilm for precise and fast CO2 separation[J]. Small,2020,16:2002836. doi: 10.1002/smll.202002836
    [4] YUAN Y, WEI J W, GENG L L, MEI D J, LIAO L. An amine-bifunctionalization strategy with Beta/KIT-6 composite as a support for CO2 adsorbent preparation[J]. RSC Adv,2020,10:34187−34196. doi: 10.1039/D0RA05044J
    [5] BOYD P G, CHIDAMBARAM A, GARCÍA-DÍEZ E. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture[J]. Nature,2019,576(7786):253−256. doi: 10.1038/s41586-019-1798-7
    [6] 周智慧, 金灿, 张豪益, 梁晓蕾, 张富民, 肖强. CO2在三聚氰胺酚醛纤维上的吸附分离[J]. 燃料化学学报,2019,47(2):242−248. doi: 10.3969/j.issn.0253-2409.2019.02.014

    ZHOU Zhi-hui, JIN Can, ZHANG Hao-yi, LIANG Xiao-lei, ZHANG Fu-min, XIAO Qiang. CO2 adsorption and separation on phloroglucinol-melamine-formaldehyde polymeric nanofibers[J]. J Fuel Chem Technol,2019,47(2):242−248. doi: 10.3969/j.issn.0253-2409.2019.02.014
    [7] 孔童童, 王霞, 郭庆杰. 新型多级微/介孔固态胺吸附剂的制备及其CO2吸附性能研究[J]. 燃料化学学报,2015,43(12):1489−1497. doi: 10.3969/j.issn.0253-2409.2015.12.013

    KONG Tong-tong, WANG Xia, GUO Qing-jie. Preparation and CO2 adsorption performance of a novel hierarchical micro/mesoporous solid amine sorbent[J]. J Fuel Chem Technol,2015,43(12):1489−1497. doi: 10.3969/j.issn.0253-2409.2015.12.013
    [8] YEO Z Y, CHAI S P, ZHU P W, MAH S K, MOHAMED A R. Preparation of self-supported crystalline merlinoite type zeolite W membranes through vacuum filtration and crystallizations for CO2/CH4 separations[J]. New J Chem,2015,39(5):4135−4140. doi: 10.1039/C5NJ00008D
    [9] MIRFENDERESK S M. Synthesis and application of high-permeable zeolite MER membrane for separation of carbon dioxide from methane[J]. J Aust Ceram Soc,2019,55:103−114. doi: 10.1007/s41779-018-0216-1
    [10] GEORGIEVA V M, BRUCE E L, VERBRAEKEN M C, SCOTT A R, CASTEEL W J, BRANDANI S, WRIGHT P A. Triggered gate opening and breathing effects during selective CO2 adsorption by merlinoite zeolite[J]. J Am Chem Soc,2019,141(32):12744−12759. doi: 10.1021/jacs.9b05539
    [11] CHOI H J, JO D, MIN J G, HONG S B. The origin of selective adsorption of CO2 on merlinoite zeolites[J]. Angew Chem,2021,60:4307−4314.
    [12] 石勤, 席静, 张富民. MER型沸石吸附分离CO2/CH4的分子模拟[J]. 化工进展,2020,39(11):4408−4417.

    SHI Qin, XI Jing, ZHANG Fu-min. Molecular simulation of adsorption separation of CO2/CH4 by MER-type zeolites[J]. Chem Ind Eng Prog,2020,39(11):4408−4417.
    [13] 石勤, 王建强, 席静, 张富民. MER型沸石的结构、合成及应用进展[J]. 石油化工,2020,49(10):1004−1011. doi: 10.3969/j.issn.1000-8144.2020.10.013

    SHI Qin, WANG Jian-qiang, XI Jing, ZHANG Fu-min. Advances in structure, synthesis and application of MER zeolite[J]. Petrochem Technol,2020,49(10):1004−1011. doi: 10.3969/j.issn.1000-8144.2020.10.013
    [14] 石勤, 黄雪莉. MER型沸石骨架和骨架外阳离子的分子模拟[J]. 离子交换与吸附,2016,32(1):38−46.

    SHI Qin, HUANG Xue-li. Molecular simulation of MER type zeolite framework and extra-framework cations[J]. Ion Exchange Adsorpt,2016,32(1):38−46.
    [15] YANG J, REN Y, TIAN A M. COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2 in liquid phases[J]. J Phys Chem B,2000,104(20):4951−4957. doi: 10.1021/jp992913p
    [16] BEI L, BEREND S. Molecular simulation studies of separation of CO2/N2, CO2/CH4 and CH4/N2 by ZIFs[J]. J Phys Chem C,2010,114(18):8515−8522. doi: 10.1021/jp101531m
    [17] 肖永厚, 周梦雪, 赵颖, 王传明, 贺高红. 金属离子改性分子筛吸附水的 Monte Carlo 模拟[J]. 化工进展,2018,37(9):3430−3436.

    XIAO Yong-hou, ZHOU Meng-xue, ZHAO Ying, WANG Chuan-ming, HE Gao-hong. Monte Carlo simulation of water adsorption on metal ions modified molecular sieves[J]. Chem Ind Eng Prog,2018,37(9):3430−3436.
    [18] 沈文龙, 李嘉旭, 杨颖, 李平, 于建国. 基于沸石ZSM-5的CH4/N2/CO2二元体系吸附平衡[J]. 化工学报,2014,65(9):3490−3498. doi: 10.3969/j.issn.0438-1157.2014.09.025

    SHEN Wen-long, LI Jia-xu, YANG Ying, LI Ping, YU Jian-guo. Binary adsorption equilibrium of CH4, N2 and CO2 on zeolite ZSM-5[J]. CIESC J,2014,65(9):3490−3498. doi: 10.3969/j.issn.0438-1157.2014.09.025
    [19] 韦小丽, 孙天军, 柯权力, 刘小伟, 王树东. 晶种法合成UZM-9分子筛及其CO2/CH4/N2吸附分离性能[J]. 燃料化学学报,2017,45(7):863−870. doi: 10.3969/j.issn.0253-2409.2017.07.011

    WEI Xiao-li, SUN Tian-jun, KE Quan-li, LIU Xiao-wei, WANG Shu-dong. Adsorptive separation properties of CO2/CH4/N2 on UZM-9 synthesized by seed-assisted method[J]. J Fuel Chem Technol,2017,45(7):863−870. doi: 10.3969/j.issn.0253-2409.2017.07.011
    [20] RYO E, SAYAKA U, NORITAKA M. Highly selective sorption and separation of CO2 from a gas mixture of CO2 and CH4 at room temperature by a zeolitic organic–inorganic ionic crystal and investigation of the interaction with CO2[J]. J Phys Chem C,2012,116(30):16105−16110. doi: 10.1021/jp305890s
    [21] 郑安民. 分子筛催化理论计算—从基础到应用[M]. 北京: 科学出版社, 2020: 296−342.

    ZHENG An-ming. Theoretical Calculation of Zeolite Catalysis–from Foundation to Application[M]. Beijing: Science Press, 2020: 296−342.
    [22] 鲁相, 陈循, 汪亚顺, 谭源源, 高木子源. 气体在无定型聚异戊二烯中扩散的分子动力学模拟[J]. 物理化学学报,2016,32(10):2523−2530. doi: 10.3866/PKU.WHXB201606292

    LU Xiang, CHEN Xun, WANG Ya-shun, TAN Yuan-yuan, GAOMU Zi-yuan. Molecular dynamics simulation of gas transport in amorphous polyisoprene[J]. Acta Phys-Chim Sin,2016,32(10):2523−2530. doi: 10.3866/PKU.WHXB201606292
    [23] YANG Z, LIU L, GUI T, ZHOU R F, CHEN X S. Mean residence time of CO2 molecules in flexible ZIF-8 cages explored by molecular dynamics simulations[J]. Chin J Chem Phys,2013,26(5):553−557. doi: 10.1063/1674-0068/26/05/553-557
    [24] HARTMANN M, MACHOKEB A G, SCHWIEGER W. Catalytic test reactions for the evaluation of hierarchical zeolites[J]. Chem Soc Rev,2016,45:3313−3330. doi: 10.1039/C5CS00935A
    [25] BEERDSEN E, DUBBELDAM D, SMIT B. Loading dependence of the diffusion coefficient of methane in nanoporous materials[J]. J Phys Chem B,2006,110(45):22754−22772. doi: 10.1021/jp0641278
    [26] LIU Z, YUAN J, BATEN J M, ZHOU J, TANG X, ZHAO C, CHEN W, YI X, KRISHNA R, SASTRE G, ZHENG A. Synergistically enhance confined diffusion by continuum intersecting channels in zeolites[J]. Sci Adv,2021,7(11):eabf0775.
    [27] XIAO J R, WEI J. Diffusion mechanism of hydrocarbons in zeolites–I. Theory[J]. Chem Eng Sci,1992,47:1123−1141. doi: 10.1016/0009-2509(92)80236-6
    [28] 温伯尧, 孙成珍, 白博峰. 多孔石墨烯分离CH4/CO2的分子动力学模拟[J]. 物理化学学报,2015,31(2):261−267. doi: 10.3866/PKU.WHXB201411271

    WEN Bo-yao, SUN Cheng-zhen, BAI Bo-feng. Molecular dynamics simulation of the separation of CH4/CO2 by nanoporous graphene[J]. Acta Phys-Chim Sin,2015,31(2):261−267. doi: 10.3866/PKU.WHXB201411271
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  63
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-04-14
  • 网络出版日期:  2021-05-17
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回