留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Ru/HZSM-5的生物油在线催化提质耐久性研究

熊永莲 卢东升 樊永胜 侯光喜 陈玉炜

熊永莲, 卢东升, 樊永胜, 侯光喜, 陈玉炜. 基于Ru/HZSM-5的生物油在线催化提质耐久性研究[J]. 燃料化学学报(中英文), 2021, 49(12): 1851-1859. doi: 10.1016/S1872-5813(21)60114-7
引用本文: 熊永莲, 卢东升, 樊永胜, 侯光喜, 陈玉炜. 基于Ru/HZSM-5的生物油在线催化提质耐久性研究[J]. 燃料化学学报(中英文), 2021, 49(12): 1851-1859. doi: 10.1016/S1872-5813(21)60114-7
XIONG Yong-lian, LU Dong-sheng, FAN Yong-sheng, HOU Guang-xi, CHEN Yu-wei. Study on durability of online catalytic upgrading of bio-oil based on Ru/HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1851-1859. doi: 10.1016/S1872-5813(21)60114-7
Citation: XIONG Yong-lian, LU Dong-sheng, FAN Yong-sheng, HOU Guang-xi, CHEN Yu-wei. Study on durability of online catalytic upgrading of bio-oil based on Ru/HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1851-1859. doi: 10.1016/S1872-5813(21)60114-7

基于Ru/HZSM-5的生物油在线催化提质耐久性研究

doi: 10.1016/S1872-5813(21)60114-7
基金项目: 国家自然科学基金(51806186)和盐城工学院引进人才校级科研基金(XJ201708)资助
详细信息
    作者简介:

    熊永莲(1977-),女,博士,副教授,主要从事动力机械新能源开发与利用研究,E-mail:serena77@126.com

    通讯作者:

    E-mail:yongsheng_fan@163.com

  • 中图分类号: TK6; TQ35

Study on durability of online catalytic upgrading of bio-oil based on Ru/HZSM-5

Funds: The project was supported by the National Natural Science Foundation of China (51806186) and the Scientific Research Project for the Introduction Talent of Yancheng Institute of Technology (XJ201708)
  • 摘要: 采用Ru/HZSM-5在线催化提质生物油,通过综合品质指数(TQI),分析生物油产率和理化特性变化,并对生物油化学组成及催化剂结焦情况进行分析。结果表明,使用新鲜催化剂所得生物油产率和理化特性均较高,TQI从0.15升至6.45;随着使用次数的增加,TQI先小幅升高至6.68,而后快速下降至1.25,第4次使用后TQI仅为0.27。初期少量结焦反应使强酸位点部分钝化,提升了芳构化性能,当催化剂使用2次时,生物油中烃类相对含量达53.79%,其中,轻质脂肪烃相对含量为16.87%,单环芳香烃相对含量为32.65%;当使用4次时,烃类相对含量仅为9.32%,催化层丧失提质作用,并对热解气产生2次裂解或聚合等不利影响。前2次使用,催化剂焦炭主要是附着在表面的低温热解焦炭;当使用3次时,低温热解焦炭和高温催化焦炭均显著增多,催化剂活性急剧下降;继续使用使焦炭小幅增加,且以热解焦炭增加为主。
  • FIG. 1150.  FIG. 1150.

    FIG. 1150.  FIG. 1150.

    图  1  生物油在线催化提质实验系统

    1: temperature controller; 2: catalytic reactor; 3: filter; 4: globe valve A; 5: globe valve B; 6: globe valve C; 7: gas collector; 8: vacuum pump; 9: pressure stabilizing tube; 10: cooling tower; 11: bio-oil collector; 12: cold trap; 13: pyrolysis reactor

    Figure  1  Experimental system for online catalytic upgrading of bio-oil

    图  2  催化剂的XRD谱图

    Figure  2  XRD patterns of catalysts

    图  3  生物油的化学组成

    Figure  3  Chemical compositions of bio-oils

    图  4  结焦催化剂的TG和DTG曲线

    Figure  4  TG and DTG curves of coked catalysts

    图  5  不同使用次数后催化剂的电镜扫描和透射照片

    Figure  5  SEM and TEM images of the catalysts after different usage time

    表  1  催化剂的酸性和纹理性质

    Table  1  Acidity and texture properties of catalysts

    CatalystB acid/
    (μmol·g−1)
    L acid/
    (μmol·g−1)
    SDFT/
    (m2·g−1)
    vDFT/
    (cm3·g−1)
    Smicro/
    (m2·g−1)
    vmicro/
    (cm3·g−1)
    Average pore width/nm
    HZSM-5141.7833.55437.150.23324.180.120.98
    Ru/HZSM-5172.4617.10305.000.19230.490.081.02
    下载: 导出CSV

    表  2  生物油产率、理化特性和TQI的变化

    Table  2  Change of bio-oil yields, physicochemical properties and TQI values

    Bio-oilYield/%VyieldpH valueVpHHHV
    /(MJ·kg−1)
    VHHVCarbon residue/%wCOxygen content/%wOTQI
    BO-043.251.132.220.5118.080.6916.721.8450.861.460.15
    BO-132.080.846.201.4232.811.263.350.3722.090.636.45
    BO-235.470.936.121.4032.901.263.550.3921.980.636.68
    BO-338.841.024.441.0226.261.017.890.8733.930.971.25
    BO-441.691.092.870.6620.080.7714.021.5445.671.310.27
    下载: 导出CSV

    表  3  BO-0与BO-4中相同化合物含量对比

    Table  3  Comparison of the contents of the same compounds in BO-0 and BO-4

    NoCompound nameStructureFormulaBO-0/%BO-4/%
    12-cyclopenten-1-one, 2-methyl-C6H8O1.701.87
    2ethanone, 1-(2-furanyl)-C6H6O21.321.20
    32-cyclopenten-1-one, 3,4-dimethyl-C7H10O3.282.03
    41,2-cyclopentanedione, 3-methyl-C6H8O27.946.51
    5phenol, 2-methoxy-C7H8O211.948.90
    62-cyclopenten-1-one, 3-ethyl-2-hydroxy-C7H10O23.303.19
    7phenol, 2-methoxy-4-methyl-C8H10O21.443.03
    8phenol, 4-ethyl-2-methoxy-C9H12O21.580.91
    9phenol, 2,6-dimethoxy-C8H10O322.4121.46
    10homovanillyl alcoholC9H12O32.774.07
    下载: 导出CSV

    表  4  不同使用时间后催化剂的结焦量

    Table  4  Coke contents of the catalysts after different usage time

    CatalystFitting/℃Peak temperature/℃Peak area/%Coefficient R2
    mainacromionmainacromiontotal
    SC-1 384−674 494 604 1.27 0.27 1.54 0.9660
    SC-2 383−674 494 603 1.73 0.37 2.10 0.9661
    SC-3 352−768 522 664 7.31 1.96 9.27 0.9975
    SC-4 308−707 483 613 8.13 2.18 10.31 0.9935
    下载: 导出CSV
  • [1] CHARON N, PONTHUS J, ESPINAT D, BROUST F, VOLLE G, VALETTE J, MEIER D. Multi-technique characterization of fast pyrolysis oils[J]. J Anal Appl Pyrolysis,2015,116:18−26. doi: 10.1016/j.jaap.2015.10.012
    [2] 樊永胜, 王佳伟, 朱雷, 樊乐乐, 赵卫东, 纪玮. 低温等离子放电与催化剂结合方式对生物油提质的影响[J]. 农业机械学报,2019,50(4):290−297. doi: 10.6041/j.issn.1000-1298.2019.04.033

    FAN Yong-sheng, WANG Jia-wei, ZHU Lei, FAN Le-le, ZHAO Wei-dong, JI Wei. Effects of compound modes of plasma discharge and catalysts on bio-oil upgrading[J]. Trans Chin Soc Agric Mach,2019,50(4):290−297. doi: 10.6041/j.issn.1000-1298.2019.04.033
    [3] ZHANG Y, CHEN P, LOU H. In situ catalytic conversion of biomass fast pyrolysis vapors on HZSM-5[J]. J Energy Chem,2016,25:427−433. doi: 10.1016/j.jechem.2016.03.014
    [4] ZHAN S, WANG C G, BI K, ZHANG X H, YU C L, DONG R J, MA L L, PANG C L. Py-GC/MS study of lignin pyrolysis and effects of catalysts on product distribution[J]. Int J Agric Biol Eng,2017,10(5):214−225.
    [5] YANG H M, NORINAGA K, LI JI, ZHU W Y, WANG H J. Effects of HZSM-5 on volatile products obtained from the fast pyrolysis of lignin and model compounds[J]. Fuel Process Technol,2018,181:207−214. doi: 10.1016/j.fuproc.2018.09.022
    [6] MULLEN C A, DORADO C, BOATENG A A. Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: Catalyst deactivation and coke formation[J]. J Anal Appl Pyrolysis,2018,129:195−203. doi: 10.1016/j.jaap.2017.11.012
    [7] MULLER S, LIU Y, VISHNUVARTHAN M, SUN X Y, VEEN A C V, HALLER G L, SANCHEZ-SANCHEZ M, LERCHER J A. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins[J]. J Catal,2015,325:48−59. doi: 10.1016/j.jcat.2015.02.013
    [8] BHOI P R, OUEDRAOGO A S, SOLOIU V, QUIRINO R. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable Sustainable Energy Rev,2020,121:109676. doi: 10.1016/j.rser.2019.109676
    [9] WANG S R, YIN Q Q, GUO J F, RU B, ZHU L J. Improved fischer-tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts[J]. Fuel,2013,597−603.
    [10] DONG C L, WANG H T, DU H C, PENG J B, CAI Y, GUO S, ZHANG J L, SAMART CHANATIP, DING M Y. Ru/HZSM-5 as an efficient and recyclable catalyst for reductive amination of furfural to furfurylamine[J]. Mol Catal,2020,482:110755. doi: 10.1016/j.mcat.2019.110755
    [11] SUN F, CHEN L G, WENG Y J, WANG T J, QIU S B, LI Q X, WANG C G, ZHANG Q, MA L L. Transformation of biomass polyol into hydrocarbon fuels in aqueous medium over Ru-Mo/CNT catalyst[J]. Catal Commun,2017,99:30−33. doi: 10.1016/j.catcom.2017.05.014
    [12] SOLARTE-TORO J C, GONZALEZ-AGUIRRE J A, GIRALDO J A P, CARLOS-A C A. Thermochemical processing of woody biomass: A review focused on energy-driven applications and catalytic upgrading[J]. Renewable Sustainable Energy Rev,2021,136:110376. doi: 10.1016/j.rser.2020.110376
    [13] CHANNIWALA S, PARIKH P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels[J]. Fuel,2002,81:1051−1063. doi: 10.1016/S0016-2361(01)00131-4
    [14] FAN Y S, CAI Y X, LI X H, YU N, YIN H Y. Catalytic upgrading of pyrolytic vapors from the vacuum pyrolysis of rape straw over nanocrystalline HZSM-5 zeolite in a two-stage fixed-bed reactor[J]. J Anal Appl Pyrolysis,2014,108:185−195. doi: 10.1016/j.jaap.2014.05.001
    [15] FAN Y S, CAI Y X, LI X H, YIN H Y, YU N, ZHANG R X, ZHAO W D. Rape straw as a source of bio-oil via vacuum pyrolysis: optimization of bio-oil yield using orthogonal design method and characterization of bio-oil[J]. J Anal Appl Pyrolysis,2014,106:63−70. doi: 10.1016/j.jaap.2013.12.011
    [16] FAN Y S, HOU G X, XIONG Y L, CHEN C J, ZHAO W D. Co-upgrading of biomass and polyethylene -derived volatiles for organic liquid over Ru, Ti, Sn/HZSM-5 coupled with NTP technology[J]. J Anal Appl Pyrolysis,2020,152:104972. doi: 10.1016/j.jaap.2020.104972
    [17] LIU T L, CAO J P, ZHAO X Y, WANG J X REN X Y, FAN X, ZHAO Y P, WEI X Y. In situ upgrading of Shengli lignite pyrolysis vapors over mental-loaded HZSM-5 catalyst[J]. Fuel Process Technol,2017,160:19−26. doi: 10.1016/j.fuproc.2017.02.012
    [18] 李小华, 陈磊, 樊永胜, 焦丽华, 刘莎, 蔡忆昔. Zn-P复合改性HZSM-5在线催化热解获取生物油的研究[J]. 燃料化学学报,2015,43(5):567−574. doi: 10.3969/j.issn.0253-2409.2015.05.008

    LI Xiao-hua, CHEN lei, FAN Yong-sheng, JIAO Li-hua, LIU Sha, CAI Yi-xi. Study on preparation of refined oil by upgrading of pyrolytic vapors using Zn-P/HZSM-5 zeolite[J]. J Fuel Chem Technol,2015,43(5):567−574. doi: 10.3969/j.issn.0253-2409.2015.05.008
    [19] 李小华, 王嘉骏, 樊永胜, 刘莎, 蔡忆昔. Fe, Co, Cu改性HZSM-5催化热解制备生物油试验[J]. 农业机械学报,2017,48(2):305−313. doi: 10.6041/j.issn.1000-1298.2017.02.041

    LI Xiao-hua, WANG Jia-jun, FAN Yong-sheng, LIU Sha, CAI Yi-xi. Fe, Co and Cu modified HZSM-5 catalysts for online upgrading of pyrolysis vapors from rape straw[J]. Trans Chin Soc Agric Mach,2017,48(2):305−313. doi: 10.6041/j.issn.1000-1298.2017.02.041
    [20] VESES A, PUERTOLAS B, CALLEN M S, GARCIA T. Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: effect of different metal cations on the bio-oil final properties[J]. Microporous Mesoporous Mater,2015,209:189−196. doi: 10.1016/j.micromeso.2015.01.012
    [21] WANG J, ZHONG Z P, DING K, XUE Z Y. Catalytic fast pyrolysis of mushroom waste to upgraded bio-oil products via pre-coked modified HZSM-5 catalyst[J]. Bioresour Technol,2016,212:6−10. doi: 10.1016/j.biortech.2016.04.005
    [22] KITAGAWA H, SENDODA Y, ONO Y. Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites[J]. J Catal,1986,101(1):12−18. doi: 10.1016/0021-9517(86)90223-X
    [23] SHAO S S, ZHANG H Y, XIAO R, LI X H, CAI Y X. Evolution of coke in the catalytic conversion of biomass-derivates by combined in-situ DRIFTS and ex-situ approach: effect of functional structure[J]. Fuel Process Technol,2018,178:88−97. doi: 10.1016/j.fuproc.2018.05.021
    [24] SONG Y, ZHANG Q, XU Y B, ZHANG Y, MATSUOKA K, ZHANG Z G. Coke accumulation and deactivation behavior of microzeolite-based Mo/HZSM-5 in the non-oxidative methane aromatization under cyclic CH4-H2 feed switch mode[J]. Appl Catal A: Gen,2017,530:12−20. doi: 10.1016/j.apcata.2016.11.016
    [25] MUKARAKATE C, ZHANG X D, STANTON A R, ROBICHAUD D J, CIESIELSKI P N, MALHOTRA K, DONOHOE B S, GJERSING E, EVANS R J, HEROUX D S, RICHARDS R, LISA K, NIMLOS M R. Real-time monitoring of the deactivation of HZSM-5 during upgrading of pine pyrolysis vapors[J]. Green Chem,2014,; 16:1444−1461.
    [26] VALLE B, CASTANO P, OLAZAR M, BILBAO J, GAYUBO A G. Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst[J]. J Catal,2012,285:304−314. doi: 10.1016/j.jcat.2011.10.004
    [27] EPELDE E, IBANEZ M, AGUAYO A T, A G, BILBAO J, CASTANO P. Differences among the deactivation pathway of HZSM-5 zeolite and SAPO-34 in the transformation of ethylene or 1-butene to propylene[J]. Microporous Mesoporous Mater,2014,195:284−293. doi: 10.1016/j.micromeso.2014.04.040
    [28] JIA L Y, RAAD M, HAMIEH S, TOUFAILYY J, HAMIEH T, BETTAHAR M M, MAUVIEL G, TARRIGHI M, PINARD L , DUFOUR A. Catalytic fast pyrolysis of biomass: Superior selectivity of hierarchical zeolites to aromatics[J]. Green Chem,2017,19:5442−5459. doi: 10.1039/C7GC02309J
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  103
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-19
  • 修回日期:  2021-05-11
  • 网络出版日期:  2021-06-12
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回