留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pt掺杂Ni/NiAlOx催化菲加氢饱和反应性能研究

刘道诚 荆洁颖 王九占 冯杰 李文英

刘道诚, 荆洁颖, 王九占, 冯杰, 李文英. Pt掺杂Ni/NiAlOx催化菲加氢饱和反应性能研究[J]. 燃料化学学报(中英文), 2022, 50(1): 90-97. doi: 10.1016/S1872-5813(21)60128-7
引用本文: 刘道诚, 荆洁颖, 王九占, 冯杰, 李文英. Pt掺杂Ni/NiAlOx催化菲加氢饱和反应性能研究[J]. 燃料化学学报(中英文), 2022, 50(1): 90-97. doi: 10.1016/S1872-5813(21)60128-7
LIU Dao-cheng, JING Jie-ying, WANG Jiu-zhan, FENG Jie, LI Wen-ying. Performance of Pt-doped Ni/NiAlOx catalysts for phenanthrene hydrogenation saturation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 90-97. doi: 10.1016/S1872-5813(21)60128-7
Citation: LIU Dao-cheng, JING Jie-ying, WANG Jiu-zhan, FENG Jie, LI Wen-ying. Performance of Pt-doped Ni/NiAlOx catalysts for phenanthrene hydrogenation saturation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 90-97. doi: 10.1016/S1872-5813(21)60128-7

Pt掺杂Ni/NiAlOx催化菲加氢饱和反应性能研究

doi: 10.1016/S1872-5813(21)60128-7
基金项目: 国家自然科学基金(21978190,22038008)资助
详细信息
    作者简介:

    刘道诚(1996-),男,硕士研究生,化学工程专业,研究方向为煤基粗油加氢提质

    通讯作者:

    Tel/Fax:86-351-6018453,E-mail:jingjieying@tyut.edu.cn

    ying@tyut.edu.cn

  • 中图分类号: TQ426

Performance of Pt-doped Ni/NiAlOx catalysts for phenanthrene hydrogenation saturation

Funds: The project was supported by National Natural Science Foundation of China (21978190, 22038008)
  • 摘要: 本研究选取菲为模型化合物,以强化芳烃吸附为目标,采用等体积浸渍法制备了系列Pt-Ni/NiAlOx催化剂,系统考察了Pt掺杂量对催化剂结构和菲加氢饱和性能的影响。结果表明,当反应温度300 ℃、氢气压力5 MPa、重时空速52 h−1时,相比Ni/NiAlOx催化剂,掺杂0.5%Pt的0.5Pt-Ni/NiAlOx催化剂上全氢菲选择性在反应8 h后由40%提升至67%,且表观反应速率和转化频率分别由1.53 × 10−3 mol·kg−1·s−1和14.64 × 10−3 s−1提升至1.81 × 10−3 mol·kg−1·s−1和22.16 × 10−3 s−1。这主要归因于金属Pt适宜的掺杂量提高了金属Ni缺电子结构的稳定性,促进芳烃吸附,提升了菲加氢饱和性能。
  • FIG. 1241.  FIG. 1241.

    FIG. 1241.  FIG. 1241.

    图  1  不同Pt负载量的催化剂(a)焙烧后与(b)还原后XRD谱图

    Figure  1  XRD patterns of catalysts after calcination (a) and reduction (b) with different Pt loadings

    图  2  不同Pt负载量的Pt-Ni/NiAlOx催化剂H2-TPR谱图

    Figure  2  H2-TPR profiles of Pt-Ni/NiAlOx catalysts with different Pt loadings

    图  3  不同Pt负载量的Pt-Ni/NiAlOx催化剂Ni 2p轨道XPS谱图

    Figure  3  XPS profiles in the Ni 2p region of the Pt-Ni/NiAlOx catalysts with different Pt loadings

    图  4  不同Pt负载量Pt-Ni/NiAlOx催化剂的活性

    Figure  4  Selectivity of perhydrophenanthrene over Pt-Ni/NiAlOx catalysts with different Pt loadings

    图  5  不同Pt负载量催化剂反应后的XRD谱图

    Figure  5  XRD patterns of catalysts after reaction with different Pt loadings

    图  6  不同负载量Pt-Ni/NiAlOx催化剂菲加氢反应后的Ni 2p轨道XPS谱图

    Figure  6  XPS spectra in the Ni 2p region of the Pt-Ni/NiAlOx catalysts with different Pt loadings after PHE hydrogenation

    图  7  (a)还原后0.25Pt-Ni/NiAlOx、(b)还原后0.5Pt-Ni/NiAlOx、(c)还原后0.75Pt-Ni/NiAlOx催化剂以及(d)反应后0.5Pt-Ni/NiAlOx催化剂TEM照片

    Figure  7  TEM images of (a) fresh 0.25Pt-Ni/NiAlOx, (b) fresh 0.5Pt-Ni/NiAlOx, (c) fresh 0.75Pt-Ni/NiAlOx catalysts and (d) spent 0.5Pt-Ni/NiAlOx catalysts

    表  1  不同Pt负载量Pt-Ni/NiAlOx催化剂的比表面积和平均孔径

    Table  1  Surface area and average pore size of Pt-Ni/NiAlOx catalysts with different Pt loadings

    Catalyst$ {{S}}_{{\rm{BET}}}^{\rm{a}}$/(m2·g−1)$ {{S}}_{{\rm{meso }}}^{\rm{b}}$/(m2·g−1)$ {{S}}_{{\rm{mic}}}^{\rm{b}}$/(m2·g−1)Average pore size/ nm
    0.25Pt-Ni/NiAlOx177.5177.55.2
    0.5Pt-Ni/NiAlOx163.4163.44.4
    0.75Pt-Ni/NiAlOx162.1162.14.8
    Ni/NiAlOx178.0178.04.5
    a: BET surface area, b: calculated by t-plot, all of the samples are tableted at 15 MPa
    下载: 导出CSV

    表  2  系列Pt-Ni/NiAlOx催化剂金属分散度及本征动力学

    Table  2  Metal dispersion and intrinsic activity of Pt-Ni/NiAlOx catalysts with different Pt loadings

    CatalystMetal dispersiona/%Hydrogenation
    conversion of PHE/%
    robs × 103/(mol·kg−1·s−1)TOF × 103/s−1Ref.
    0.25Pt-Ni/NiAlOx0.9410.91 b1.2018.68 bthis work
    0.5Pt-Ni/NiAlOx1.1415.68 b1.8122.16 bthis work
    0.75Pt-Ni/NiAlOx1.7614.31 b1.6313.48 bthis work
    Ni/NiAlOx1.9918.50 c1.5314.64 cthis work
    0.5Pt/Al2O399.126.24 d0.050.58 dthis work
    NiMoS/MZSM-50.741.80[9]
    Ni2P/HZSM-5-M1.328.20[26]
    a: calculated by CO pulse adsorption; b: determined at 300 ℃, H2 pressure of 5 MPa, 1% PHE in decalin, WHSV of 720 h−1; c: determined at 300 ℃, H2 pressure of 5 MPa, 1% PHE in decalin, WHSV of 520 h−1; d: determined at 300 ℃, H2 pressure of 5 MPa, 1% PHE in decalin, WHSV of 52 h−1
    下载: 导出CSV
  • [1] JING J Y, WANG J Z, LIU D C, QIE Z Q, BAI H C, LI W Y. Naphthalene hydrogenation saturation over Ni2P/Al2O3 catalysts synthesized by thermal decomposition of hypophosphite[J]. ACS Omega,2020,5(48):31423−31431. doi: 10.1021/acsomega.0c05019
    [2] YOON E M, SELVARAJ L, SONG C, STALLMAN J B, COLEMAN M M. High-temperature stabilizers for jet fuels and similar hydrocarbon mixtures. 1. Comparative studies of hydrogen donors[J]. Energy Fuels,1996,10(3):806−811. doi: 10.1021/ef950228l
    [3] ZHANG X W, PAN L, WANG L, ZOU J J. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids[J]. Chem Eng Sci,2018,180:95−125. doi: 10.1016/j.ces.2017.11.044
    [4] JIA T H, ZHANG X W, LIU Y, GONG S, DENG C, PAN L, ZOU J J. A comprehensive review of the thermal oxidation stability of jet fuels[J]. Chem Eng Sci,2021,229:116157. doi: 10.1016/j.ces.2020.116157
    [5] LI C S, SUZUKI K. Resources, properties and utilization of tar[J]. Resour Conserv Recycl,2010,54(11):905−915. doi: 10.1016/j.resconrec.2010.01.009
    [6] HAYAKAWA K, MURAHASHI T, AKUTSU K, KANDA T, TANG N, KAKIMOTO H, TORIBA A, KIZU R. Comparison of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in airborne and automobile exhaust particulates[J]. Polycycl Aromat Compd,2000,20(1/4):179−190. doi: 10.1080/10406630008034784
    [7] HAYAKAWA K, MURAHASHI T, AKUTSU K, KANDA T, TANG N, KAKIMOTO H, TORIBA A, KIZU R. Simultaneous hydrogenation of multiring aromatic compounds over NiMo catalyst[J]. Ind Eng Chem Res,2008,47(19):7161−7166. doi: 10.1021/ie8004258
    [8] QIAN W H, YODA Y, HIRAI Y, ISHIHARA A, KABE T. Hydrodesulfurization of dibenzothiophene and hydrogenation of phenanthrene on alumina-supported Pt and Pd catalysts[J]. Appl Catal A: Gen,1999,184(1):81−88. doi: 10.1016/S0926-860X(99)00083-6
    [9] FU W Q, ZHANG L, WU D F, XIANG M, ZHUO Q, HUANG K, TAO Z D, TANG T D. Mesoporous zeolite-supported metal sulfide catalysts with high activities in the deep hydrogenation of phenanthrene[J]. J Catal,2015,330:423−433. doi: 10.1016/j.jcat.2015.07.026
    [10] WANG D G, LI J H, ZHENG A D, MA H J, PAN Z D, QU W, WANG L, HAN J Q, WANG C X, TIAN Z J. Quasi-single-layer MoS2 on MoS2/TiO2 nanoparticles for anthracene hydrogenation[J]. ACS Appl Nano Mater,2019,2(8):5096−5107. doi: 10.1021/acsanm.9b01001
    [11] WANG D G, LI J H, ZHENG A D, MA H J, PAN Z D, QU W, WANG L, HAN J Q, WANG C X, TIAN Z J. Designing MoS2 nanocatalysts with increased exposure of active edge sites for anthracene hydrogenation reaction[J]. Catal Sci Technol,2017,7:2998−3007. doi: 10.1039/C7CY01026E
    [12] LUO W Q, SHI H, SCHACHTL E, GUTIéRREZ O T, LERCHER J A. Active sites on nickel-promoted transition-metal sulfides that catalyze hydrogenation of aromatic compounds[J]. Angew Chem-Int Ed,2018,57:14555−14559. doi: 10.1002/anie.201808428
    [13] GHADAMI YAZDI M, MOUD P H, MARKS K, PISKORZ W, ÖSTRÖM H, HANSSON T, KOTARBA A, ENGVALL K, GÖTHELID M. Naphthalene on Ni(111): Experimental and theoretical insights into adsorption, dehydrogenation, and carbon passivation[J]. J Mater Chem C,2017,121(40):22199−22207.
    [14] 刘道诚, 王九占, 荆洁颖, 杨志奋, 冯杰, 李文英. 稠环芳烃加氢饱和催化剂研究进展[J]. 化工进展,2021,40(2):835−844.

    LIU Dao-cheng, WANG Jiu-zhan, JING Jie-ying, YANG Zhi-feng, FENG Jie, LI Wen-ying. Research progress on the catalysts for saturated hydrogenation of polycyclic aromatic hydrocarbons[J]. Chem Ind Eng Prog,2021,40(2):835−844.
    [15] LIU D C, JING J Y, WANG J Z, FENG J, LI W Y. Phenanthrene hydrogenation saturation over Ni/NiAl2O4 catalyst prepared by modified sol-gel method[C]. 37th Annual International Pittsburgh Coal Conference, 2020.
    [16] KITCHIN J R, NØRSKOV J K, BARTEAU M A, CHEN J G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces[J]. Phys Rev Lett,2004,93(15):156801. doi: 10.1103/PhysRevLett.93.156801
    [17] MAVRIKAKIS M, HAMMER B, NøRSKOV J K. Effect of strain on the reactivity of metal surfaces[J]. Phys Rev Lett,1998,81(13):2819−2822. doi: 10.1103/PhysRevLett.81.2819
    [18] BERTOLINI J-C. Surface stress and chemical reactivity of Pt and Pd overlayers[J]. Appl Catal A: Gen,2000,191(1):15−21.
    [19] MORALES-MARíN A, AYASTUY J L, IRIARTE-VELASCO U, GUTIéRREZ-ORTIZ M A. Nickel aluminate spinel-derived catalysts for the aqueous phase reforming of glycerol: Effect of reduction temperature[J]. Appl Catal B: Environ,2019,244:931−945. doi: 10.1016/j.apcatb.2018.12.020
    [20] RAAB C, LERCHER J A, GOODWIN J G, SHYU J Z. Preparation and characterization of silica-supported Ni/Pt catalysts[J]. J Catal,1990,122(2):406−414. doi: 10.1016/0021-9517(90)90294-T
    [21] 方洁, 李娜, 成浪, 陆江银. Ni-Cu作用对于1,4-丁炔二醇一步法低压加氢的影响[J]. 燃料化学学报,2019,47(6):725−736. doi: 10.3969/j.issn.0253-2409.2019.06.010

    FANG Jie, LI Na, CHENG Lang, LU Jiang-yin. Effect of Ni-Cu on the one-step mild pressure hydrogenation of 1,4-butynediol[J]. J Fuel Chem Technol,2019,47(6):725−736. doi: 10.3969/j.issn.0253-2409.2019.06.010
    [22] VAN DEELEN T W, HERNÁNDEZ MEJÍA C, DE JONG K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nat Catal,2019,2(11):955−970. doi: 10.1038/s41929-019-0364-x
    [23] LEE Y-K, OYAMA S T. Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating: EXAFS and FTIR studies[J]. J Catal,2006,239(2):376−389. doi: 10.1016/j.jcat.2005.12.029
    [24] SRIFA A, KAEWMEESRI R, FANG C, ITTHIBENCHAPONG V, FAUNGNAWAKIJ K. NiAl2O4 spinel-type catalysts for deoxygenation of palm oil to green diesel[J]. Chem Eng J,2018,345:107−113. doi: 10.1016/j.cej.2018.03.118
    [25] TUO Y X, MENG Y, CHEN C, LIN D, FENG X, PAN Y, LI P, CHEN D, LIU Z N, ZHOU Y, ZHANG J. Partial positively charged Pt in Pt/MgAl2O4 for enhanced dehydrogenation activity[J]. Appl Catal B: Environ,2021,288:119996. doi: 10.1016/j.apcatb.2021.119996
    [26] FU W Q, ZHANG L, WU D F, YU Q Y, TANG T, TANG T D. Mesoporous zeolite ZSM-5 supported Ni2P catalysts with high activity in the hydrogenation of phenanthrene and 4, 6-dimethyldibenzothiophene[J]. Ind Eng Chem Res,2016,55(26):7085−7095. doi: 10.1021/acs.iecr.6b01583
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  188
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 修回日期:  2021-06-15
  • 网络出版日期:  2021-07-16
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回