留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氢键作用的含酚油混合物中酚的高效分离

纪柚安 赵晓胜 刘青 杨玉凤 韩江则

纪柚安, 赵晓胜, 刘青, 杨玉凤, 韩江则. 基于氢键作用的含酚油混合物中酚的高效分离[J]. 燃料化学学报(中英文), 2021, 49(11): 1584-1591. doi: 10.1016/S1872-5813(21)60137-8
引用本文: 纪柚安, 赵晓胜, 刘青, 杨玉凤, 韩江则. 基于氢键作用的含酚油混合物中酚的高效分离[J]. 燃料化学学报(中英文), 2021, 49(11): 1584-1591. doi: 10.1016/S1872-5813(21)60137-8
JI You-an, ZHAO Xiao-sheng, LIU Qing, YANG Yu-feng, HAN Jiang-ze. Efficient separation of phenols from phenols-containing oil mixtures via forming hydrogen bonds[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1584-1591. doi: 10.1016/S1872-5813(21)60137-8
Citation: JI You-an, ZHAO Xiao-sheng, LIU Qing, YANG Yu-feng, HAN Jiang-ze. Efficient separation of phenols from phenols-containing oil mixtures via forming hydrogen bonds[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1584-1591. doi: 10.1016/S1872-5813(21)60137-8

基于氢键作用的含酚油混合物中酚的高效分离

doi: 10.1016/S1872-5813(21)60137-8
基金项目: 河北科技大学人才引进科研启动基金(81/1181381)和河北省高等学校科学技术研究重点项目(ZD2021320)资助
详细信息
    通讯作者:

    Tel: 0311-88632183, E-mail: jiyouan@126.com

  • 中图分类号: TQ523.59

Efficient separation of phenols from phenols-containing oil mixtures via forming hydrogen bonds

Funds: The project was supported by the Scientific Research Foundation for the Introduction of Talents of Hebei University of Science and Technology (81/1181381) and the Key Projects of Science and Technology Research in Colleges and Universities of Hebei Province (ZD2021320)
  • 摘要: 本文采用米屈肼(THP)、吉拉尔特试剂T、吉拉德试剂P基于氢键作用分离油中的苯酚。结果发现,三种分离剂均可与苯酚形成低共熔溶剂(DES)而分离苯酚,其中米屈肼对苯酚的分离效率最高,可达96.5%;油中残余苯酚浓度低至1.3 g/L;10 min即可完成分离;苯酚的初始浓度不影响分离后油中最低残余苯酚浓度(约8.8 g/L)。采用正己烷洗涤的方法去除DES中夹带的中性油。结果发现,DES中的中性油与苯酚质量比降至0.04,说明酚产品纯度将大幅提高。米屈肼可再生并重复使用五次,性质不变。FT-IR表征发现米屈肼与苯酚间存在氢键作用。
  • FIG. 1054.  FIG. 1054.

    FIG. 1054.  FIG. 1054.

    图  1  不同分离剂对甲苯中苯酚的分离效率。

    Figure  1  Separation of phenol separated by different separation agents

    conditions: initial phenol content, 100.0 g/L; temperature, 25 ℃; stirring time, 30 min; mole ratio, 0.8; oil mixture, toluene+phenol

    图  2  搅拌时间对苯酚分离效果的影响

    Figure  2  Effect of stirring time on phenol separation

    conditions: initial phenol content, 100.0 g/L; separation temperature, 25 ℃; THP to phenol content 0.8; mixture, toluene+phenol

    图  3  分离温度对苯酚分离效果的影响

    Figure  3  Effect of separation temperature on phenol separation

    conditions: initial phenol content, 100.0 g/L; separation temperature, 25 ℃; THP to phenol content 0.8; oil mixture, toluene+phenol

    图  4  米屈肼与苯酚物质的量比对苯酚分离效果的影响

    Figure  4  Effect of THP to phenol mole ratio on phenol separation

    conditions: initial phenol content, 100.0 g/L; separation temperature, 25 ℃; stirring time, 30 min; oil mixture, toluene+phenol

    图  5  米屈肼与苯酚物质的量比对苯酚分配系数的影响

    Figure  5  Effect of THP to phenol mole ratio on D of phenol conditions: initial phenol content, 100.0 g/L; separation temperature, 25 ℃; stirring time, 30 min

    图  6  不同米屈肼与苯酚物质的量比下甲苯的夹带

    Figure  6  Entrainment of toluene at different THP to phenol mole ratios

    conditions: initial phenol content, 100.0 g/L; separation temperature, 25 ℃; stirring time, 30 min

    图  7  苯酚初始质量浓度对苯酚分离效果的影响

    Figure  7  Effect of initial phenol content on phenol separation conditions: separation temperature, 25 ℃; stirring time, 30 min; THP to phenol content, 0.8; oil mixture, toluene+phenol

    图  8  米屈肼与苯酚物质的量比对苯酚分离效果的影响

    Figure  8  Effect of THP to phenol mole ratio on phenol separation

    conditions: mixture, n-hexane+phenol, initial phenol content, 10.0 g/L, separation temperature, 25 ℃; stirring time, 30 min

    图  9  米屈肼的再生与重复使用

    Figure  9  Regeneration and reuse of THP

    conditions: initial phenol content, 100.0 g/L, separation temperature, 25 ℃; stirring time, 30 min; THP to phenol content, 0.8

    图  10  米屈肼样品的 1H NMR表征

    Figure  10  1H NMR spectra of THP samples

    图  11  米屈肼的回收率随重复使用次数的变化

    Figure  11  Recovery rate of THP as a function of cycle time

    图  12  米屈肼、苯酚、两者混合物的FT-IR谱图

    Figure  12  FT-IR spectra of THP, phenol, and their mixture

    图  13  米屈肼与苯酚作用示意图

    Figure  13  Diagram of interaction between THP and phenol

    表  1  实验试剂一览表

    Table  1  Chemicals used in this work

    ChemicalCAS numberSpecificationSupplier
    Phenol108-95-298%Aladdin Chemical Co., Ltd., Shanghai, China
    Toluene108-88-399%Beijing Tongguang Fine Chemicals Co., Ltd., Beijing, China
    n-hexane110-54-397%Beijing Tongguang Fine Chemicals Co., Ltd., Beijing, China
    Ether60-29-798%Beijing Tongguang Fine Chemicals Co., Ltd., Beijing, China
    Girard's reagent T123-46-698%Aladdin Chemical Co., Ltd., Shanghai, China
    Girard's reagent P1126-58-598%Aladdin Chemical Co., Ltd., Shanghai, China
    THP76144-81-598%Aladdin Chemical Co., Ltd., Shanghai, China
    D2O7789-20-099.9%Saen Chemical Technology Co., Ltd., Shanghai, China
    下载: 导出CSV
  • [1] WILLIAM M, MARKS S C, ALAN C. Evaluation of phenolic compounds in commercial fruit juices and fruit drinks[J]. J Agr Food Chem,2007,55(8):3148−3157. doi: 10.1021/jf062970x
    [2] SCHOBERT H H, SONG C. Chemicals and materials from coal in the 21st century[J]. Fuel,2002,81(1):15−32. doi: 10.1016/S0016-2361(00)00203-9
    [3] 张可琢, 余雅黔, 唐瑞, 郑宇琦, 高家俊, 姜兴茂. 聚乙烯吡咯烷酮对油中酚类物质的吸附性能[J]. 燃料化学学报,2019,47(11):1305−1312. doi: 10.3969/j.issn.0253-2409.2019.11.004

    ZHANG Ke-zhuo, YU Ya-qian, TANG Rui, ZHENG Yu-qi, GAO Jia-jun, JIANG Xing-mao. Adsorption performance of polyvinylpyrrolidone for phenols in oil[J]. J Fuel Chem Technol,2019,47(11):1305−1312. doi: 10.3969/j.issn.0253-2409.2019.11.004
    [4] 邓晶晶, 罗泽军, 王储, 朱锡锋. 疏水性离子液体对生物油水相馏分中酚类物质的萃取研究[J]. 燃料化学学报, doi: 10.1016/S1872-5813(21)60108-1.

    DENG Jing-jing, LUO Ze-jun, WANG Chu, ZHU Xi-feng. Study on the extraction of phenols from bio-oil aqueous fraction by hydrophobic ionic liquids[J]. J Fuel Chem Technol, doi: 10.1016/S1872-5813(21)60108-1.
    [5] 薛怡凡, 李梦瑶, 冯摇杰, 樊文俊, 李文英. 煤直接液化油中混合酚的分离研究[J]. 燃料化学学报,2019,47(11):1298−1304. doi: 10.3969/j.issn.0253-2409.2019.11.003

    XUE Yi-fan, LI Meng-yao, FENG Jie, FAN Wen-jun, LI Wen-ying. Separation of mixed phenolic compounds from direct coal liquefaction[J]. J Fuel Chem Technol,2019,47(11):1298−1304. doi: 10.3969/j.issn.0253-2409.2019.11.003
    [6] 焦甜甜. 煤低温热解油高效分离及系统集成[D]. 北京: 中国科学院大学, 2016.

    JIAO Tian-tian. Efficient separation of low temperature coal pyrolysis oil and system integration[D]. Beijing: University of Chinese Academy of Sciences, 2016.
    [7] 任洪凯, 邓文安, 李传, 崔文龙. 中/低温煤焦油酚类化合物的组成研究[J]. 煤炭转化,2013,36(2):67−70. doi: 10.3969/j.issn.1004-4248.2013.02.017

    REN Hong-kai, DENG Wen-an, LI Chuan, CUI Wen-long. Study on the composition of phenolic compounds in middle /low temperature coal tar[J]. Coal Convers,2013,36(2):67−70. doi: 10.3969/j.issn.1004-4248.2013.02.017
    [8] ZHANG G H, SUN H J. Production and market analysis of phenol in domestic[J]. Chem Ind,2014,32(10):33−35.
    [9] 王汝成, 孙鸣, 刘巧霞, 马燕星, 冯光, 徐龙, 马晓迅. 陕北中低温煤焦油中酚类化合物的提取与GC/MS分析[J]. 煤炭学报,2011,36(4):664−669.

    WANG Ru-cheng, SUN Ming, LIU Qiao-xia, MA Yan-xing, FENG Guang, XU Long, MA Xiao-xun. Extraction and GC/MS analysis of phenolic compounds in low temperature coal tar from Northern Shaanxi[J]. J China Coal Soc,2011,36(4):664−669.
    [10] APARICIO S, ATILHAN M, KARADAS F. Thermophysical properties of pure ionic liquids: Review of present situation[J]. Ind Eng Chem Res,2016,49(20):9580−9595.
    [11] ZHANG Q H, ZHANG S Q, DENG Y Q. Recent advances in ionic liquid catalysis[J]. Green Chem,2011,13:2619−2637. doi: 10.1039/c1gc15334j
    [12] GUO L P, WANG C M, LUO X Y, CUI G K, LI H R. Probing catalytic activity of halide salts by electrical conductivity in the coupling reaction of CO2 and propylene oxide[J]. Chem Commun,2010,46(32):5960−5962. doi: 10.1039/c0cc00584c
    [13] HOU Y C, REN Y H, PENG W, REN S H, WU W Z. Separation of phenols from oil using imidazolium-based ionic liquids[J]. Ind Eng Chem Res,2013,52(50):18071−18075. doi: 10.1021/ie403849g
    [14] 侯玉翠, 彭威, 杨春梅, 李省云, 吴卫泽. 咪唑基离子液体萃取分离模拟油酚混合物[J]. 化工学报,2013,64(S1):118−123.

    HOU Yu-cui, PENG Wei, YANG Chun-mei, LI Sheng-yun, WU Wei-ze. Extraction of phenolic compounds from simulated oil with imidazolium based ionic liquids[J]. J Chem Ind Eng (China),2013,64(S1):118−123.
    [15] 熊佳丽, 孟洪, 陆颖舟, 李春喜. 对二氯苄-聚乙烯咪唑型聚合离子液体的制备及对煤焦油中苯酚的吸附性能[J]. 高等学校化学学报,2014,35(9):2031−2036. doi: 10.7503/cjcu20140214

    XIONG Jia-li, MENG Hong, LU Ying-zhou, LI Chun-xi. Synthesis of 1,4-bis(chloromethyl)benzene crosslinked poly(vinylimidazolium) and its adsorptivity for phenol from coal tar[J]. Chem J Chin Univ,2014,35(9):2031−2036. doi: 10.7503/cjcu20140214
    [16] JI Y A, HOU Y C, REN S H, YAO C F, WU W Z. Highly efficient separation of phenolic compounds from oil mixtures by imidazolium-based dicationic ionic liquids via forming deep eutectic solvents[J]. Energy Fuels,2017,31(9):10274−10282. doi: 10.1021/acs.energyfuels.7b01793
    [17] JI Y A, HOU Y C, REN S H, YAO C F, WU W Z. Highly efficient extraction of phenolic compounds from oil mixtures by trimethylamine-based dicationic ionic liquids via forming deep eutectic solvents[J]. Fuel Process Technol,2018,171:183−191. doi: 10.1016/j.fuproc.2017.11.015
    [18] 韦露, 樊友军. 低共熔溶剂及其应用研究进展[J]. 化学通报,2011,74(4):333−339.

    WEI Lu, FAN You-jun. Progress of deep eutectic solvents and their applications[J]. Chem Bull,2011,74(4):333−339.
    [19] ABBOTT A P, CAPPER G, DAVIES D L, RASHEED R K, TAMBYRAJAH V. Novel solvent properties of choline chloride/urea mixtures[J]. Chem Commun,2003,1(1):70−71.
    [20] ABBOTT A P, CAPPER G, MCKENZIE K J, RYDER K S. Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride[J]. J Electroanal Chem,2007,599(2):4269−4277.
    [21] ANDREW P A, KHALID E T, GERO F, KATY J M, RYDER K S. Electrodeposition of copper composites from deep eutectic solvents based on choline chloride[J]. Phys Chem Chem Phys,2009,11(21):4269−4277. doi: 10.1039/b817881j
    [22] 李佳慧, 胡嘉, 赵荣祥, 乔海燕, 李秀萍. 氯化胆碱/草酸型低共熔溶剂氧化脱除模拟油硫化物[J]. 燃料化学学报,2014,42(7):870−876.

    LI Jia-hui, HU Jia, ZHAO Rong-xiang, QIAO Hai-yan, LI Xiu-ping. Oxidative desulfurization of model oil with choline chloride/oxalic acid as a eutectic solvent[J]. J Fuel Chem Technol,2014,42(7):870−876.
    [23] GUO W J, HOU Y C, REN S H, TIAN S D, WU W Z. Formation of deep eutectic solvents by phenols and choline chloride and their physical properties[J]. J Chem Eng Data,2013,58(4):866−872. doi: 10.1021/je300997v
    [24] GUO W J, HOU Y C, WU W Z, REN S H, TIAN S D, MARSH K N. Separation of phenol from model oils with quaternary ammonium salts via forming deep eutectic solvents[J]. Green Chem,2012,15(1):226−229.
    [25] PANG K, HOU Y C, WU W Z, GUO W J, PENG W, MARSH K N. Efficient separation of phenols from oils via forming deep eutectic solvents[J]. Green Chem,2012,14(9):2398−2401. doi: 10.1039/c2gc35400d
    [26] ZHANG Y, LI Z Y, WANG H Y, XUAN X P, WANG J J. Efficient separation of phenolic compounds from model oil by the formation of choline derivative-based deep eutectic solvents[J]. Sep Purif Technol,2016,163:310−318. doi: 10.1016/j.seppur.2016.03.014
    [27] JIAO T T, ZHUANG X L, HE H Y, LI C S, CHEN H N, ZHANG S J. Separation of phenolic compounds from coal tar via liquid–liquid extraction using amide compounds[J]. Ind Eng Chem Res,2015,54(9):2573−2579. doi: 10.1021/ie504892g
    [28] JIAO T T, LI C S, ZHUANG X L, CAO S S, CHEN H N, ZHANG S J. The new liquid–liquid extraction method for separation of phenolic compounds from coal tar[J]. Chem Eng J,2015,266:148−155. doi: 10.1016/j.cej.2014.12.071
    [29] YAO C F, HOU Y C, REN S H, WU W Z, ZHANG K, JI Y A, LIU H. Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents[J]. Chem Eng J,2017,620−626.
    [30] 王震, 侯玉翠, 任树行, 孔洁, 吴卫泽. 低共熔法萃取分离油酚混合物过程中油的夹带[J]. 化工学报,2015,66:247−252.

    WANG Zhen, HOU Yu-cui, REN Shu-hang, KONG Jie, WU Wei-ze. Oil entrainment during separating phenols from model oils via forming deep eutectic solvents[J]. CIESC J,2015,66:247−252.
    [31] JI Y A, HOU Y C, REN S H, YAO C F, WU W Z. Separation of phenolic compounds from oil mixtures using environmentally benign biological reagents based on brønsted acid-lewis base interaction[J]. Fuel,2019,239:926−934. doi: 10.1016/j.fuel.2018.11.007
    [32] ASPRION N, HASSE H, MAURER G. FT-IR spectroscopic investigations of hydrogen bonding in alcohol–hydrocarbon solutions[J]. Fluid Phase Equilibr,2001,186(1/2):1−25. doi: 10.1016/S0378-3812(01)00363-6
    [33] MAES G, SMETS J. Hydrogen bond cooperativity: A quantitative study using matrix-isolation FT-IR spectroscopy[J]. J Phys Chem,1993,97(9):1818−1825. doi: 10.1021/j100111a017
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  103
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-07-06
  • 网络出版日期:  2021-08-10
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回