留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

精馏系统内真空度对生物油模型化合物蒸馏特性的影响

马亚凯 袁鑫华 罗泽军 朱锡锋

马亚凯, 袁鑫华, 罗泽军, 朱锡锋. 精馏系统内真空度对生物油模型化合物蒸馏特性的影响[J]. 燃料化学学报(中英文), 2022, 50(2): 160-165. doi: 10.1016/S1872-5813(21)60140-8
引用本文: 马亚凯, 袁鑫华, 罗泽军, 朱锡锋. 精馏系统内真空度对生物油模型化合物蒸馏特性的影响[J]. 燃料化学学报(中英文), 2022, 50(2): 160-165. doi: 10.1016/S1872-5813(21)60140-8
MA Ya-kai, YUAN Xin-hua, LUO Ze-jun, ZHU Xi-feng. Influence of vacuum degrees in rectification system on distillation characteristics of bio-oil model compounds[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 160-165. doi: 10.1016/S1872-5813(21)60140-8
Citation: MA Ya-kai, YUAN Xin-hua, LUO Ze-jun, ZHU Xi-feng. Influence of vacuum degrees in rectification system on distillation characteristics of bio-oil model compounds[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 160-165. doi: 10.1016/S1872-5813(21)60140-8

精馏系统内真空度对生物油模型化合物蒸馏特性的影响

doi: 10.1016/S1872-5813(21)60140-8
基金项目: 国家重点研发计划(2018YFB1501404)资助
详细信息
    作者简介:

    马亚凯:mayakai@mail.ustc.edu.cn

    通讯作者:

    E-mail: xfzhu@ustc.edu.cn

  • 中图分类号: TK6

Influence of vacuum degrees in rectification system on distillation characteristics of bio-oil model compounds

Funds: The project was supported by the National Key Research and Development Program of China (2018YFB1501404)
  • 摘要: 利用小试精馏装置对生物油模型化合物进行蒸馏实验,通过调节系统的真空度将生物油模型化合物分别在常压和减压状态下进行蒸馏,分析并总结了馏分中各组分的变化规律。结果表明,随着系统内真空度的不断升高,生物油模型化合物的总馏出率不断增加且结焦率不断降低,水分更容易被蒸出,馏分中有机物的初馏温度降低而馏出率增加。因此,增大真空度可有效分离生物油模型化合物的组分并降低蒸馏的能量损耗;当真空度为−0.08 MPa时,生物油模型化合物的蒸馏效果最好,其中,乙酸和糠醛的馏出率分别可达99.50%和65.88%、苯酚和愈创木酚的馏出率为25.19%和26.17%,均超过25%。
  • FIG. 1262.  FIG. 1262.

    FIG. 1262.  FIG. 1262.

    图  1  精馏塔小试装置示意图

    Figure  1  Schematic diagram of small-scale rectification column

    图  2  不同真空度下蒸馏馏分的总馏出率

    Figure  2  Yields of total distilled fractions at different vacuum degrees

    图  3  不同真空度下馏分中水分馏出率

    Figure  3  Moisture of distilled fractions at different vacuum degrees

    图  4  不同真空度下馏分中乙醇的馏出率

    Figure  4  Alcohol yields of distilled fractions at different vacuum degrees

    图  5  不同真空度下馏分中乙酸的馏出率

    Figure  5  Acetic acid yields of distilled fractions at different vacuum degrees

    图  6  不同真空度下馏分中糠醛的馏出率

    Figure  6  Furfural yields of distilled fractions at different vacuum degrees

    图  7  不同真空度下馏分中苯酚的馏出率

    Figure  7  Phenol yields of distilled fractions at different vacuum degrees

    图  8  不同真空度下馏分中愈创木酚的馏出率

    Figure  8  Guaiacol yields of distilled fractions at different vacuum degrees

  • [1] 王超, 陈冠益, 兰维娟, 马文超. 生物质快速热解制油试验及流程模拟[J]. 化工学报,2014,65(2):679−683. doi: 10.3969/j.issn.0438-1157.2014.02.044

    WANG Chao, CHEN Guan-yi, LAN Wei-juan, MA Wen-chao. Experimental research and process simulation on biomass fast pyrolysis for production of bio-oil[J]. CIESC J,2014,65(2):679−683. doi: 10.3969/j.issn.0438-1157.2014.02.044
    [2] 王琦, 姚燕, 王树荣, 骆仲泱, 岑可法. 生物油离子交换树脂催化酯化试验研究[J]. 浙江大学学报(工学版),2009,43(5):926−930. doi: 10.3785/j.issn.1008-973X.2009.05.027

    WANG Qi, YAO Yan, WANG Shu-rong, LUO Zhong-yang, CEN Ke-fa. Experimental research on bio-oil catalytic esterification using cation exchange resins[J]. J Zhejiang Univ-Sci(Eng Sci),2009,43(5):926−930. doi: 10.3785/j.issn.1008-973X.2009.05.027
    [3] 秦菲, 崔洪友, 王传波, 王丽红, 易维明. 萃取耦合化学转化法提质生物油油溶相的研究[J]. 燃料化学学报,2014,42(7):805−812.

    QIN Fei, CUI Hong-you, WANG Chuan-bo, WANG Li-hong, YI Wei-ming. Upgrading the oil-soluble fraction of bio-oil by solvent extraction coupling with chemical conversion[J]. J Fuel Chem Technol,2014,42(7):805−812.
    [4] 李美惠, 马文超, 毕亚东, 陈冠益, 陈慧. 减压蒸馏生物油与乙醇在ZSM-5/MCM-41上共催化裂化[J]. 燃料化学学报,2015,43(3):309−314. doi: 10.3969/j.issn.0253-2409.2015.03.008

    LI Mei-hui, MA Wen-chao, BI Ya-dong, CHEN Guan-yi, CHEN Hui. Catalytic co-cracking of reduced pressure distillation of bio-oil and ethanol over ZSM-5/MCM-41[J]. J Fuel Chem Technol,2015,43(3):309−314. doi: 10.3969/j.issn.0253-2409.2015.03.008
    [5] 孙孟超, 袁鑫华, 罗泽军, 朱锡锋. 蒸馏温度对核桃壳生物油馏分组分分布的影响[J]. 燃料化学学报,2020,48(10):1179−1185. doi: 10.3969/j.issn.0253-2409.2020.10.004

    SUN Meng-chao, YUAN Xin-hua, LUO Ze-jun, ZHU Xi-feng. Influence of heating temperatures on the component distribution of distillates derived from walnut shell bio-oil[J]. J Fuel Chem Technol,2020,48(10):1179−1185. doi: 10.3969/j.issn.0253-2409.2020.10.004
    [6] LIU Z, GAO J, XIAO C. Preparation and vacuum membrane distillation performance of a superhydrophobic polypropylene hollow fiber membrane modified via ATRP[J]. Desalination,2021,512:115130.
    [7] WANG S, GU Y, LIU Q, YAO Y, GUO Z, LUO Z, EN K. Separation of bio-oil by molecular distillation[J]. Fuel Process Technol,2009,90:738−45. doi: 10.1016/j.fuproc.2009.02.005
    [8] 郭祚刚, 王树荣, 朱颖颖, 骆仲泱, 岑可法. 生物油酸性组分分离精制研究[J]. 燃料化学学报,2009,37(1):49−52.

    Zuo-gang GUO, Shu-rong WANG, Ying-ying ZHU, Zhong-yang LUO, Ke-fa CEN. Separation of acid compounds for refining biomass pyrolysis oil[J]. J Fuel Chem Technol,2009,37(1):49−52.
    [9] RAHMAN S, HELLEU R, MACQUARRIE S, SADEGH PAPARI S, HAWBOLDT K. Upgrading and isolation of low molecular weight compounds from bark and softwood bio-oils through vacuum distillation[J]. Sep Purif Technol,2018,194:123−129.
    [10] CHOI J H, KIM S, WOO H C. Characteristics of vacuum fractional distillation from pyrolytic macroalgae (Saccharina japonica) bio-oil[J]. J Ind Eng Chem,2017,51:206−216.
    [11] YUAN X, SUN M, WANG C, ZHU X. Full temperature range study of rice husk bio-oil distillation: Distillation characteristics and product distribution[J]. Sep Purif Technol,2021,263: 118382.
    [12] 吴俊生, 邵惠鹤. 精馏设计、操作和控制[M]. 北京: 中国石化, 1997: 36-40.

    WU Jun-sheng, SHAO Hui-he. Distillation Design, Operation and Control[M]. Beijing: China Petrochemical Press, 1997: 36-40.
    [13] CHATTERJEE K, DOLLIMORE D, ALEXANDER K. A new application for the Antoine equation in formulation development[J]. Int J Pharmaceut,2001,213(1).
    [14] WANG C, LUO Z, DIAO R, ZHU X. Study on the effect of condensing temperature of walnut shells pyrolysis vapors on the composition and properties of bio-oil[J]. Bioresource Technol,2019,285:121370.
    [15] 唐国徐. 核桃壳生物油蒸馏特性及残渣制备活性炭研究[D]. 合肥: 中国科学技术大学, 2019.

    TANG Guo-xu. Study on the distillation characteristics of walnut shell bio-oil and preparation of activated carbon from residues[D]. Hefei: University of Science and Technology of China, 2019.
    [16] 陈军昊, 卢亮, 王树荣. 基于分子蒸馏的模拟生物油温和加氢研究[J]. 燃料化学学报,2017,45(9):1056−1063. doi: 10.3969/j.issn.0253-2409.2017.09.005

    CHEN Jun-hao, LU Liang, WANG Shu-rong. Mild hydrogenation of simulated bio-oil based on molecular distillation[J]. J Fuel Chem Technol,2017,45(9):1056−1063. doi: 10.3969/j.issn.0253-2409.2017.09.005
    [17] GILLI P, GILLI G. Hydrogen bond models and theories: The dual hydrogen bond model and its consequences[J]. J Mol Struct,2010,972(1–3):2−10.
    [18] DING X, YUAN X, LENG L, HUANG H, WANG H, SHAO J, JIANG L, CHEN X, ZENG G. Upgrading sewage sludge liquefaction bio-oil by microemulsification: The effect of ethanol as polar phase on solubilization performance and fuel properties[J]. Energy Fuels,2017,31(2):1574−1582. doi: 10.1021/acs.energyfuels.6b02269
    [19] 王琼, 王闻, 亓伟, 余强, 谭雪松, 庄新姝, 袁振宏, 王忠铭. 木质纤维素酸催化制备糠醛的工艺及机理研究进展[J]. 农业工程学报,2017,33(15):272−282. doi: 10.11975/j.issn.1002-6819.2017.15.035

    WANG Qiong, WANG Wen, QI Wei, YU Qiang, TAN Xue-song, ZHUANG Xin-shu, YUAN Zhen-hong, WANG Zhong-ming. Progress on technologies and mechanism of furfural production from lignocellulose catalyzed by acids[J]. Trans Chin Soc Agric Eng,2017,33(15):272−282. doi: 10.11975/j.issn.1002-6819.2017.15.035
  • 加载中
图(9)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  73
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2021-07-14
  • 网络出版日期:  2021-08-10
  • 刊出日期:  2022-02-12

目录

    /

    返回文章
    返回