留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu3N自支撑电极制备及其电催化氮气还原性能研究

何晖宇 王晟 纪律律

何晖宇, 王晟, 纪律律. Cu3N自支撑电极制备及其电催化氮气还原性能研究[J]. 燃料化学学报(中英文), 2022, 50(4): 484-493. doi: 10.1016/S1872-5813(21)60152-4
引用本文: 何晖宇, 王晟, 纪律律. Cu3N自支撑电极制备及其电催化氮气还原性能研究[J]. 燃料化学学报(中英文), 2022, 50(4): 484-493. doi: 10.1016/S1872-5813(21)60152-4
HE Hui-yu, WANG Sheng, JI Lü-lü. Fabrication of self-supported Cu3N electrode for electrocatalytic nitrogen reduction reaction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 484-493. doi: 10.1016/S1872-5813(21)60152-4
Citation: HE Hui-yu, WANG Sheng, JI Lü-lü. Fabrication of self-supported Cu3N electrode for electrocatalytic nitrogen reduction reaction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 484-493. doi: 10.1016/S1872-5813(21)60152-4

Cu3N自支撑电极制备及其电催化氮气还原性能研究

doi: 10.1016/S1872-5813(21)60152-4
基金项目: 浙江省自然科学基金(LQ20B030001)资助
详细信息
    作者简介:

    何晖宇(1997−),男,硕士研究生. E-mail:532049791@qq.com

    通讯作者:

    E-mail:llji@zstu.edu.cn

  • 中图分类号: O646

Fabrication of self-supported Cu3N electrode for electrocatalytic nitrogen reduction reaction

Funds: The project was supported by Natural Science Foundation of Zhejiang Province (LQ20B030001)
More Information
    Corresponding author: JI Lü-lü (1991-), male, lecturer. E-mail: llji@zstu.edu.cn
  • 摘要: 利用可再生能源衍生电力电催化氮气(N2)还原制氨(NH3)为实现绿色可持续发展提供了新思路,但该过程需要高效率、高选择性和高稳定性的廉价电催化剂。过渡金属氮化物(TMNs)由于其独特的电子结构和催化机理近年来被广泛研究应用于电催化氮气还原反应(NRR),但是目前关于氮化铜材料的电催化NRR研究报道较少。本研究采用简单一步氮化法将泡沫铜(CF)高温氮化制备了三维自支撑型氮化铜电极(Cu3N/CF),通过各种表征手段对该电极进行了系统的结构分析和形貌表征,并研究了其在中性条件下的电催化NRR性能和稳定性。结果表明,在0.1 mol/L Na2SO4溶液中,Cu3N/CF电极在−0.2 V的电位下具有最佳的电催化NRR性能,其NH3速率为1.12 × 10−10 mol/(s·cm2),法拉第效率为1.5%,并且表现出优异的电催化循环稳定性和结构稳定性。
  • FIG. 1470.  FIG. 1470.

    FIG. 1470.  FIG. 1470.

    图  1  (a)Cu3N/CF的XRD谱图;(b)CF的SEM照片;Cu3N/CF的((c)、(d))SEM照片、(e)TEM照片和(f)HRTEM照片

    Figure  1  (a) XRD pattern of Cu3N/CF; (b) SEM image of CF; ((c), (d)) SEM, (e) TEM, (f) HRTEM images of Cu3N/CF

    图  2  一系列标准质量浓度的${\rm{NH}}_4^+ $溶液的(a)UV-vis谱图和(b)在655 nm处的浓度-吸光度线性拟合曲线;一系列标准质量浓度的N2H4溶液的(c)UV-vis谱图和(d)在455 nm处的浓度-吸光度线性拟合曲线

    Figure  2  (a) UV-vis absorption spectra and (b) the corresponding calibration curve of various ${\rm{NH}}_4^+ $ concentrations; (c) UV-vis absorption spectra and (d) the corresponding calibration curve of various N2H4 concentrations

    图  3  (a)Cu3N/CF电极分别在饱和Ar和N2的0.1 mol/L Na2SO4溶液中的LSV曲线;(b)Cu3N/CF电极在饱和N2电解液中开路电位下电解2 h后电解液的UV-vis光谱;不同方法检测获得的UV-vis谱图与对应产物的生成速率和FE:(c)靛酚蓝比色法;(d)Watt-Chrisp法;(e)NH3速率与FE;(f)N2H4速率

    Figure  3  (a) LSV curves of Cu3N/CF in Ar- and N2-saturated 0.1 mol/L Na2SO4, (b) UV-vis absorption spectra of the electrolyte after electrolysis of Cu3N/CF at open circuit potential in N2-saturated electrolyte for 2 h, UV-vis absorption spectra of the electrolyte by different detection methods and the corresponding product formation rate and FE, (c) Indophenol blue method;,(d) Watt-Chrisp method; (e) NH3 generation rate and FE, (f) N2H4 generation rate

    图  4  (a)CF与Cu3N/CF电极在−0.2 V电位下的电催化产NH3速率对比;(b)CF与(c)Cu3N/CF电极在0.1 mol/L Na2SO4溶液中不同扫描速率下的CV曲线;(d)CF与Cu3N/CF电极的电容电流-扫描速率关系曲线

    Figure  4  (a) NH3 generation rates for CF and Cu3N/CF at −0.2 V vs. RHE in 0.1 mol/L Na2SO4, CV curves for (b) CF and (c) Cu3N/CF with various scan rates in 0.1 mol/L Na2SO4, (d) capacitive current as a function of scan rate for CF and Cu3N/CF

    图  5  (a)Cu3N/CF电极在−0.2 V电位下的电解曲线;(b)Cu3N/CF电极在电解前后的XRD谱图;(c)Cu3N/CF电极电解后的SEM照片;(d)Cu3N/CF电极循环电解五次的产NH3速率与FE

    Figure  5  (a) Long-term electrolysis curve of Cu3N/CF at −0.2 V,(b) XRD patterns of Cu3N/CF before and after electrolysis,(c) SEM image of Cu3N/CF after electrolysis,(d) recycling test of Cu3N/CF at −0.2 V

    图  6  (a)Mars-van Krevelen催化机理(蓝色、绿色和黄色球分别代表H、N和Cu原子);(b)Cu3N/CF电极在Ar气氛下电解2 h电解液的UV-vis光谱;Cu3N/CF电极在Ar气氛下电解前后的(c)XRD谱图和(d)EDX谱图

    Figure  6  (a) Proposed Mars-van Krevelen mechanism (blue, green, and yellow balls represent H, N, and Cu atoms, respectively), (b) UV-vis absorption spectrum of the Ar-saturated electrolyte after electrolysis of Cu3N/CF, (c) XRD patterns and (d) EDX spectra of Cu3N/CF before and after electrocatalysis of Cu3N/CF in Ar-saturated electrolyte

    表  1  Cu3N/CF与其它电催化剂产NH3速率和FE的比较

    Table  1  Comparison of NH3 generation rate and FE for Cu3N/CF with other reported electrocatalysts

    CatalystElectrolytePotential/VNH3 generation rate/(mol·s–1·cm–2)FE/%Ref.
    Cu3N/CF 0.1 mol/L Na2SO4 −0.2 1.12 × 10−10 1.5 this work
    W2N3 nanosheet 0.10 mol/L KOH −0.2 3.8 × 10–11 11.67 [21]
    Mo2N nanorod 0.1 mol/L HCl −0.3 78.4 (μg·h−1·mgcat. −1 4.5 [22]
    VN nanoparticles 1 mol/L H2SO4 −0.1 3.3 × 10–10 6 [14]
    Mo nanofilm 0.01 mol/L H2SO4 −0.49 3.09 × 10–11 0.72 [29]
    CP2TiCl 1.0 mol/L LiCl −1 9.5 × 10–10 0.23 [30]
    VN nanosheet 0.1 mol/L HCl −0.5 8.40 × 10–11 2.25 [31]
    Fe2O3/CNT KHCO3 −2 3.58 × 10−12 0.15 [32]
    Fe3O4/Ti 0.1 mol/L Na2SO4 −0.4 5.6 × 10−11 2.6 [33]
    MoS2 0.1 mol/L HCl −0.5 8.48 × 10−11 0.096 [34]
    Ru/C 2 mol/L KOH −1.02 3.43 × 10−12 0.28 [35]
    下载: 导出CSV
  • [1] ZHANG L H, YU F, SHIJU N R. Carbon-based catalysts for selective electrochemical nitrogen-to-ammonia conversion[J]. ACS Sustainable Chem Eng,2021,9(23):7687−7703. doi: 10.1021/acssuschemeng.1c00575
    [2] LIU H M, LI W, LIU F, PEI Z X, SHI J, WANG Z J, HE D H, CHEN Y. Homogeneous, heterogeneous, and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions[J]. ACS Catal,2019,9(6):5245−5267. doi: 10.1021/acscatal.9b00994
    [3] SPAULDING D K, WECK G, LOUBEYRE P, DATCHI F, DUMAS P, HANFLAND M. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure[J]. Nat Commun,2014,5(1):1−7.
    [4] CUI X, TANG C, ZHANG Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Adv Energy Mater,2018,8(22):1800369. doi: 10.1002/aenm.201800369
    [5] GUO W H, ZHANG K X, LIANG Z B, ZOU R Q, XU Q. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design[J]. Chem Soc Rev,2019,48(24):5658−5716. doi: 10.1039/C9CS00159J
    [6] HIRAKAWA H, HASHIMOTO M, SHIRAISHI Y, HIRAI T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide[J]. J Am Chem Soc,2017,139(31):10929−10936. doi: 10.1021/jacs.7b06634
    [7] KE W, DANIEL S, ZHENG Y. Electron-driven heterogeneous catalytic synthesis of ammonia: Current states and perspective[J]. Carbon Resour Convers,2018,1(1):2−31. doi: 10.1016/j.crcon.2018.06.004
    [8] LING C Y, NIU X H, LI Q, DU A J, WANG J L. Metal-free single atom catalyst for N2 fixation driven by visible light[J]. J Am Chem Soc,2018,140(43):14161−14168. doi: 10.1021/jacs.8b07472
    [9] 谢锐, 曹波, 徐迅, 多树旺. 电催化固氮催化剂研究进展[J]. 江西科技师范大学学报,2020,,(6):26−29.

    XIE Rui, CAO Bo, XU Xu, DUO Shu-wang. Research progress of electrocatalytic nitrogen fixation catalyst[J]. J Jiangxi Sci Technol Normal Univ,2020,,(6):26−29.
    [10] 詹溯, 章福祥. 常温常压电催化合成氨的研究进展[J]. 化学学报,2021,79(2):146−157. doi: 10.6023/A20090412

    ZHAN Su, ZHANG Fu-xiang. Recent progress on electrocatalytic synthesis of ammonia under amibent conditions[J]. Acta Chim Sin,2021,79(2):146−157. doi: 10.6023/A20090412
    [11] 刘洋. 策略性提升常温常压下电催化合成氨效率的研究[D]. 南宁: 广西大学, 2020.

    LIU Yang. Strategically increasing the efficiency of electrocatalytic ammonia synthesis under ambient contditions[D]. Nanning: Guangxi University, 2020.
    [12] WANG J, HUANG B L, JI Y J, SUN M Z, WU T, YIN R G, ZHU X, LI Y Y, SHAO Q, HUANG X Q. A general strategy to glassy M‐Te (M= Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation[J]. Adv Mater,2020,32(11):1907112. doi: 10.1002/adma.201907112
    [13] LIU Y Y, WANG W K, ZHANG S B, LI W Y, WANG G Z, ZHANG Y X, HAN M M, ZHANG H M. MoS2 nanodots anchored on reduced graphene oxide for efficient N2 fixation to NH3[J]. ACS Sustainable Chem Eng,2020,8(5):2320−2326. doi: 10.1021/acssuschemeng.9b07679
    [14] YANG X, NASH J, ANIBAL J, DUNWELL M, KATTEL S, STAVITSKI E, ATTENKOFER K, CHEN J G, YAN Y S, XU B J. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles[J]. J Am Chem Soc,2018,140(41):13387−13391. doi: 10.1021/jacs.8b08379
    [15] YANG M M, HUO R P, SHEN H D, XIA Q, QIU J S, ROBERTSON A W, LI X, SUN Z Y. Metal-tuned W18O49 for efficient electrocatalytic N2 reduction[J]. ACS Sustainable Chem Eng,2020,8(7):2957−2963. doi: 10.1021/acssuschemeng.9b07526
    [16] WANG Y, JIA K, PAN Q, XU Y D, LIU Q, CUI G W, GUO X D, SUN X P. Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions[J]. ACS Sustainable Chem Eng,2018,7(1):117−122.
    [17] 董国文,陈飘,任国平,王超,金曙光,叶捷,周顺. 碳化硼促进Psendomonas stutzeri A1501电催化固氮产氨及机制[J]. 中国环境科学,2021,41(5):2449−2458. doi: 10.3969/j.issn.1000-6923.2021.05.053

    DONG Guo-wen, CHEN Piao, REN Guo-ping, WANG Chao, JIN Shu-guang, YE Jie, ZHOU Shun-gui. Boron carbide promotes the ammonia production by electrocatalytic nitrogen fixation with Psendomonas Stutzeri A1501[J]. China Environ Science,2021,41(5):2449−2458. doi: 10.3969/j.issn.1000-6923.2021.05.053
    [18] ZHAO C J, ZHANG S B, HAN M M, ZHANG X, LIU Y Y, CHEN C, WANG G Z, ZHANG H M, ZHAO H J. Ambient electrosynthesis of ammonia on a biomass-derived nitrogen-doped porous carbon electrocatalyst: contribution of pyridinic nitrogen[J]. ACS Energy Lett,2019,4(2):377−383. doi: 10.1021/acsenergylett.8b02138
    [19] WU T W, LI X Y, ZHU X J, MOU S Y, LUO Y L, SHI X F, ASIRI A M, ZHANG Y N, ZHENG B Z, ZHAO H T, SUN X P. P-Doped graphene toward enhanced electrocatalytic N2 reduction[J]. Chem Commun,2020,56(12):1831−1834. doi: 10.1039/C9CC09179C
    [20] ABGHOUI, Y, GARDEN A L, HLYNSSON V F, BJÖRGVINSDÓTTIR S, ÓLAFSDÓTTIR H, SKÚLASON E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design[J]. Phys Chem Chem Phys,2015,17(7):4909−4918. doi: 10.1039/C4CP04838E
    [21] JIN H Y, LI L Q, LIU X, TANG C, XU W J, CHEN S M, SONG LI, ZHENG Y, QIAO S Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction[J]. Adv Mater,2019,31(32):1902709−1902716. doi: 10.1002/adma.201902709
    [22] REN X, CUI G, CHEN L, XIE F Y, WEI Q, TIAN Z Q, SUN X P. Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst[J]. Chem Commun,2018,54(61):8474−8477. doi: 10.1039/C8CC03627F
    [23] SHENG H, OH M H, OSOWIECKI W T, KIM W Y, ALIVISATOS P, FREI H. Carbon dioxide dimer radical anion as surface intermediate of photoinduced CO2 reduction at aqueous Cu and CdSe nanoparticle catalysts by rapid-scan FT-IR spectroscopy[J]. J Am Chem Soc,2018,140(12):4363−4371. doi: 10.1021/jacs.8b00271
    [24] MCCRORY, C C L, DEVADOSS A, OTTENWAELDER X, LOWE R D, STACK T D P, CHIDSEY C E D. Electrocatalytic O2 reduction by covalently immobilized mononuclear copper (I) complexes: Evidence for a binuclear Cu2O2 intermediate[J]. J Am Chem Soc,2011,133(11):3696−3699. doi: 10.1021/ja106338h
    [25] LI C B, MOU S Y, ZHU X J, WANG F Y, WANG Y T, QIAO Y A, SHI X F, LUO Y L, ZHENG B Z, LI QUAN, SUN X P. Dendritic Cu: a high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions[J]. Chem Commun,2019,55(96):14474−14477. doi: 10.1039/C9CC08234D
    [26] LIU Y Q, HUANG L, ZHU X Y, FANG Y X, DONG S J. Coupling Cu with Au for enhanced electrocatalytic activity of nitrogen reduction reaction[J]. Nanoscale,2020,12(3):1811−1816. doi: 10.1039/C9NR08788E
    [27] WANG F, LIU Y P, ZHANG H, CHU P K. CuO/graphene nanocomposite for nitrogen reduction reaction[J]. ChemCatChem,2019,11(5):1441−1447. doi: 10.1002/cctc.201900041
    [28] ZHAO R B, GENG Q, CHANG L, WEI P P, LUO Y L, SHI X F, ASIRI A M, LU S Y, WANG Z M, SUN X P. Cu3P nanoparticle-reduced graphene oxide hybrid: an efficient electrocatalyst to realize N2 to NH3 conversion under ambient conditions[J]. Chem Commun,2020,56(65):9328−9331. doi: 10.1039/D0CC04374E
    [29] YANG DASHUAI, TING CHEN, AND ZHIJIANG WANG. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm[J]. J Mater Chem A,2017,5(36):18967−18971. doi: 10.1039/C7TA06139K
    [30] JEONG E H, YOO C Y, JUNG C H, PARK J H, PARK Y C, KIM J N, OH S G, WOO Y M, YOON H C. Electrochemical ammonia synthesis mediated by titanocene dichloride in aqueous electrolytes under ambient conditions[J]. ACS Sustainable Chem Eng,2017,5(11):9662−9666. doi: 10.1021/acssuschemeng.7b02908
    [31] ZHANG R, ZHANG Y, REN X, CUI G W, ASIRI A M, ZHENG B Z, SUN X P. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array[J]. ACS Sustainable Chem Eng,2018,6(8):9545−9549. doi: 10.1021/acssuschemeng.8b01261
    [32] CHEN S, PERATHONER S, AMPELLI C, MEBRAHTU C, SU D S, CENTI G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst[J]. Angew Chem Int Ed,2017,56(10):2699−2703. doi: 10.1002/anie.201609533
    [33] LIU Q, ZHANG X X, ZHANG B, LUO Y L CUI G W, XIE F Y, SUN X P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod[J]. Nanoscale,2018,10(30):14386−14389. doi: 10.1039/C8NR04524K
    [34] ZHANG L, JI X Q, REN X, MA Y J, SHI X F, TIAN Z Q, ASIRI A M, CHEN L, TANG B, SUN X P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies[J]. Adv Mater,2018,30(28):1800191. doi: 10.1002/adma.201800191
    [35] KORDALI V, KYRIACOU G, LAMBROU C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chem Commun,2000,17:1673−1674.
    [36] ABGHOUI Y, GARDEN A L, HOWALT J G. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments[J]. ACS Catal,2016,6(2):635−646. doi: 10.1021/acscatal.5b01918
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  2944
  • HTML全文浏览量:  250
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-02
  • 修回日期:  2021-08-11
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回