留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pretreating Co/SiO2 to generate highly active Fischer-Tropsch synthesis catalyst with low CH4 selectivity

MU Shi-fang SHANG Ru-jing CHEN Jian-gang ZHANG Jian-li

穆仕芳, 尚如静, 陈建刚, 张建利. Co/SiO2预处理制备高活性低CH4选择性FT合成催化剂[J]. 燃料化学学报(中英文), 2021, 49(11): 1592-1598. doi: 10.1016/S1872-5813(21)60163-9
引用本文: 穆仕芳, 尚如静, 陈建刚, 张建利. Co/SiO2预处理制备高活性低CH4选择性FT合成催化剂[J]. 燃料化学学报(中英文), 2021, 49(11): 1592-1598. doi: 10.1016/S1872-5813(21)60163-9
MU Shi-fang, SHANG Ru-jing, CHEN Jian-gang, ZHANG Jian-li. Pretreating Co/SiO2 to generate highly active Fischer-Tropsch synthesis catalyst with low CH4 selectivity[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1592-1598. doi: 10.1016/S1872-5813(21)60163-9
Citation: MU Shi-fang, SHANG Ru-jing, CHEN Jian-gang, ZHANG Jian-li. Pretreating Co/SiO2 to generate highly active Fischer-Tropsch synthesis catalyst with low CH4 selectivity[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1592-1598. doi: 10.1016/S1872-5813(21)60163-9

Co/SiO2预处理制备高活性低CH4选择性FT合成催化剂

doi: 10.1016/S1872-5813(21)60163-9
详细信息
  • 中图分类号: O643. 36

Pretreating Co/SiO2 to generate highly active Fischer-Tropsch synthesis catalyst with low CH4 selectivity

Funds: The project was supported by the Foundation of State Key Laboratory of Coal Conversion (J20-21-612), the Initiation Foundation of Henan Polytechnic University (B2019-54) and Henan Key Laboratory of Coal Green Conversion (CGCF201910).
More Information
  • 摘要: 采用TEM、HRTEM、XRD、XPS、H2-TPD、TG和TPR研究了三种预处理方法(DR、R、ROR)对Co/SiO2催化剂微观结构和费托合成(FTS)反应性能的影响。结果表明,经过预处理后,Co物种的特定形态发生变化,形成新的Co活性表面物种,Co粒子重新分散,Co物种易于再还原。不同方法预处理的Co/SiO2催化剂表现出不同的催化性能,经还原钝化处理的催化剂具有较高的FTS活性和C5+选择性。
  • FIG. 1055.  FIG. 1055.

    FIG. 1055. 

    Figure  1  TEM ((a), (c)) and HRTEM ((b), (d)) images of the catalysts: (a), (b): Co3O4/SiO2; (c), (d): Co/SiO2-R

    Figure  2  XRD patterns of the catalysts

    Figure  3  XPS spectra of the Co 2p level for catalysts

    Figure  4  TPR profiles of the catalysts

    Table  1  Physico-chemical properties of the catalysts

    CatalystSBET/(m2·g−1)TPVa/(cm3·g−1)Pore diameter/nmCrystallite sizeb/nmDispersionc/%Reductiond/%
    Co3O4/SiO2153.60.616.716.35.978.2
    Co/SiO2-DR157.70.820.511.38.580.5
    Co/SiO2-R16.50.819.19.110.685.6
    Co/SiO2-ROR157.00.716.711.98.182.1
    a: total pore volume; b: metallic cobalt crystallite size calculated from the formula: dnm = 96/D(%); c: cobalt metal dispersion from H2-TPD; d: calculated from TG results
    下载: 导出CSV

    Table  2  Data from XPS characterization of the catalysts

    CatalystCo 2p3/2/eVCo 2p1/2/eVE/eVn(Co/Si) ratio (theoretical value)ICo 2p/ISi 2p in the samples
    Co3O4/SiO2780.5795.515.00.190.08
    Co/SiO2-DR780.8796.115.30.190.10
    Co/SiO2-R780.4795.515.10.190.13
    Co/SiO2-ROR780.7795.915.20.190.11
    下载: 导出CSV

    Table  3  Catalytic performance of the catalysts

    CatalystCO conv./%${\rm{C} }_{5+}$ STY/(g·mL−1·h−1)Hydrocarbon distribution w/%
    C1C2−4${\rm{C} }_{{5+}}$C5−11C12−18${\rm{C} }_{{18 +}}$
    Co3O4/SiO220.60.0222.46.571.115.927.527.7
    Co/SiO2-DR43.50.0317.75.976.419.525.131.8
    Co/SiO2-R42.30.086.01.992.021.031.839.2
    Co/SiO2-ROR44.10.0314.85.180.121.626.532.1
    Reaction conditions: T = 483 K; p = 2.0 MPa; H2/CO = 2.0; GHSV = 1000 h−1
    下载: 导出CSV
  • [1] KAI J, ALI CAN K, IVAN L, NORBERT P, MATHAIS B, PATRICIA C, GONZOLA P. Design of cobalt Fischer-Tropsch catalysts for the combined production of liquid fuels and olefin chemicals from hydrogen-rich syngas[J]. ACS Catal,2021,11(1):4784−4798.
    [2] CHEN W, LIN T J, DAI Y Y, AN Y L, YU F, ZHONG L S, LI S G, SUN Y H. Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts[J]. Catal Today,2018,311(1):8−22.
    [3] SUN J, YANG G H, PENG X B, KANG J C, WU J H, LIU G B, TSUBAKI N. Beyond Cars: Fischer-Tropsch synthesis for non-auto-motive applications[J]. ChemCatChem,2019,11(2):1412−1424.
    [4] GUO S P, WANG Q, WANG M, MA Z Y, WANG J G, HOU B, CHEN C B, XIA M, JIA L T, LI D B. A comprehensive insight into the role of barium in catalytic performance of Co/Al2O3 catalyst for Fischer-Tropsch synthesis[J]. Fuel,2019,256(1):1−11.
    [5] ZHOU W, CHENG K, KANG J C, ZHOU C, SUBRAMANIAN V, ZHANG Q H, WANG Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev,2019,48(12):3193−3228. doi: 10.1039/C8CS00502H
    [6] BUKUR D B, NOWICKI L, MANNE R K, LANG X S. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis: II. Reaction studies[J]. J Catal,1995,155(2):366−375. doi: 10.1006/jcat.1995.1218
    [7] NIEMELA M K, BACKMAN L, KRAUSE A O, VAARA T. The activity of the Co/SiO2 catalyst in relation to pretreatment[J]. Appl Catal A: Gen,1997,156(2):319−334. doi: 10.1016/S0926-860X(97)00044-6
    [8] HOU X N, QING S J, LIU Y J, XI H J, WANG T F, WANG X, GAO Z X. Reshaping CuO on silica to generate a highly active Cu/ SiO2 catalyst[J]. Catal Sci Technol,2016,16(2):6311−6319.
    [9] TANG LG, YAMAGUCHI D, LEITA B, SAGE V, BURKE V, Chiang V. The effects of oxidation-reduction treatment on the structure and activity of cobalt-based catalysts[J]. Catal Commun,2015,59(2):166−169.
    [10] JNIOUI A, EDDOUASSE M, AMARIGLIO A, EHRHARDT J J, LAMBERT J, ALNOT M, AMARIGLIO H. Oxidizing pretreatments as a means of activating cobalt in CO2 methanation; parallel kinetic probing and surface analysis[J]. Surf Sci,1985,162(1/3):368−374. doi: 10.1016/0039-6028(85)90922-7
    [11] JNIOUI A, EDDOUASSE M, AMARIGLIO A, EHRHARDT J J, AMARIGLIO H. Catalytic activation of cobalt induced by oxidizing treatments in the methanation of carbon dioxide[J]. J Catal,1987,106(1):144−165. doi: 10.1016/0021-9517(87)90220-X
    [12] DWYER D J, SOMORJAI G A. Hydrogenation of CO and CO2 over iron foils: Correlations of rate, product distribution, and surface composition[J]. J Catal,1978,52(2):291−301. doi: 10.1016/0021-9517(78)90143-4
    [13] FROHLICH G, KESTEL U, LOJEWSKA J, MEYER G, BORGMANN D, DZIEMBAJ R, WEDLER G. Activation and deactivation of cobalt catalysts in the hydrogenation of carbon dioxide[J]. Appl Catal A: Gen,1996,134(1):1−19. doi: 10.1016/0926-860X(95)00207-3
    [14] SEXTON B A, SOMORJAI G A. The hydrogenation of CO and CO2 over polycrystalline rhodium: Correlation of surface composition, kinetics and product distributions[J]. J Catal,1977,46(2):167−189. doi: 10.1016/0021-9517(77)90198-1
    [15] KOBYLINSK T P, KIBBY C L, PANNELL R B, EDDY E L. Activated cobalt catalyst and synthesis gas conversion using same: US, 4 605 679[P]. 1986- 08-12.
    [16] KOBYLINSK T P, KIBBY C L, PANNELL R B, EDDY E L. Synthesis gas conversion using ROR-activated catalyst: US, 4605676[P]. 1986-08-12.
    [17] JIA L T, FANG K G, CHEN J G, SUN Y H. Influence of reduction oxidation reduction treatment on the structure and catalytic performance of Co/ZrO2 for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2010,38(6):710−715.
    [18] JACOBS G, SARKAR A, JI Y Y, LUO M S, DOZIER A K, DAVIS B. Fischer-Tropsch Synthesis: Assessment of the ripening of cobalt clusters and mixing between Co and Ru promoter via oxidation-reduction-cycles over lower Co-loaded Ru-Co/Al2O3 catalysts[J]. Ind Eng Chem Res,2008,47(3):672−680. doi: 10.1021/ie0709988
    [19] CAI J, JIANG F, LIU X H. Exploring pretreatment effects in Co/SiO2 Fischer-Tropsch catalysts: Different oxidizing gases applied to oxidation-reduction process[J]. Appl Catal B: Environ,2017,210(1):1−13.
    [20] BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms[J]. J Am Chem Soc,1951,73(1):373−380. doi: 10.1021/ja01145a126
    [21] POTOCZNA-PETRU D, JABLONSKI J M, OKAL J. Influence of oxidation-reduction treatment on the microstructure of Co/SiO2 catalyst[J]. Appl Catal A: Gen,1998,175(1/2):113−120. doi: 10.1016/S0926-860X(98)00214-2
    [22] SCHANKE D, VADA S, BLEKKAN A E, HILMAN A M, HOFF A, HOLMEN A. Study of Pt-promoted cobalt CO hydrogenation catalysts[J]. J Catal,1995,156(3):85−95.
    [23] SUN S, TSUBAKI N, FUJIMOTO K. The reaction performances and characterization of Fischer-Tropsch synthesis Co/SiO2 catalysts prepared from mixed cobalt salts[J]. Appl Catal A: Gen,2000,202(1):121−131. doi: 10.1016/S0926-860X(00)00455-5
    [24] JONGSOMJIT B, PANPRANOT J, GOODWIN J G. Co-support compound formation in alumina-supported cobalt catalysts[J]. J Catal,2001,204(1):98−109. doi: 10.1006/jcat.2001.3387
    [25] VAN DE LOOSDRECHT J, BARRADAS S, CARICATO E A, NGWENYA N G, NKWANYANA P S, RAWAT M A S, SIGBELEA B H, VAN BERGE P J, VISIAGE J L. Calcination of Co-based Fischer-Tropsch synthesis catalysts[J]. Top Catal,2003,26(1):121−127.
    [26] VAN BERGE P J, VAN DE LOOSDRECHT J, VISAGIE J L. Cobalt catalyst: WO, 0139882 [P]. 1999-12-1.
    [27] MATSUZAKI T, TAKEUCHI K, HANAOKA T, SUGI Y. Hydrogenation of carbon monoxide over highly dispersed cobalt catalysts derived from cobalt(II) acetate[J]. Catal Today,1996,28(3):251−259. doi: 10.1016/0920-5861(95)00245-6
    [28] MATSUZAKI T, TAKEUCHI K, HANAOKA T, ARAWAKA H, SUGI Y. Effect of transition metals on oxygenates formation from syngas over Co/SiO2[J]. Appl Catal A: Gen,1993,105(2):159−184. doi: 10.1016/0926-860X(93)80246-M
    [29] KOGELBAUER A, GOODWIN J G. Ruthenium promotion of Co/Al2O3 Fischer-Tropsch catalysts[J]. J Catal,1996,160(1):125−133. doi: 10.1006/jcat.1996.0130
    [30] KHODAKOV A Y, CONSTANT A G, BECHARA R, ZHOLOBENKO Y L. Pore size effects in Fischer-Tropsch synthesis over cobalt-supported mesoporous silicas[J]. J Catal,2002,206(2):230−241. doi: 10.1006/jcat.2001.3496
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  307
  • HTML全文浏览量:  53
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 修回日期:  2021-06-17
  • 网络出版日期:  2021-09-20
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回