留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

麦秸秆与黑龙江褐煤共热氧化法制备腐植酸及其结构分析

李艳玲 陈曦 张翠清 李晓峰 刘鹏 陈文轩 任素霞 雷廷宙

李艳玲, 陈曦, 张翠清, 李晓峰, 刘鹏, 陈文轩, 任素霞, 雷廷宙. 麦秸秆与黑龙江褐煤共热氧化法制备腐植酸及其结构分析[J]. 燃料化学学报(中英文), 2023, 51(2): 145-154. doi: 10.1016/S1872-5813(22)60033-1
引用本文: 李艳玲, 陈曦, 张翠清, 李晓峰, 刘鹏, 陈文轩, 任素霞, 雷廷宙. 麦秸秆与黑龙江褐煤共热氧化法制备腐植酸及其结构分析[J]. 燃料化学学报(中英文), 2023, 51(2): 145-154. doi: 10.1016/S1872-5813(22)60033-1
LI Yan-ling, CHEN Xi, ZHANG Cui-qing, LI Xiao-feng, LIU Peng, CHEN Wen-xuan, REN Su-xia, LEI Ting-zhou. Preparation and structural analysis of humic acid by co-thermal oxidation of wheat straw and Heilongjiang lignite[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 145-154. doi: 10.1016/S1872-5813(22)60033-1
Citation: LI Yan-ling, CHEN Xi, ZHANG Cui-qing, LI Xiao-feng, LIU Peng, CHEN Wen-xuan, REN Su-xia, LEI Ting-zhou. Preparation and structural analysis of humic acid by co-thermal oxidation of wheat straw and Heilongjiang lignite[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 145-154. doi: 10.1016/S1872-5813(22)60033-1

麦秸秆与黑龙江褐煤共热氧化法制备腐植酸及其结构分析

doi: 10.1016/S1872-5813(22)60033-1
基金项目: 国家重点研发计划(2021YFC2101604),常州市重点研发计划(农业科技支撑)(CE20212043) , 国家自然科学基金(51906021)和国家能源投资集团科技创新项目(GJNY-21-95)资助
详细信息
    通讯作者:

    E-mail: liupeng@cczu.edu.cn

    china_newenergy@163.com

  • 中图分类号: TQ536.1

Preparation and structural analysis of humic acid by co-thermal oxidation of wheat straw and Heilongjiang lignite

Funds: The project was supported by the National Key Research and Development Program of China (2021YFC2101604), Changzhou Key Research and Development Project (Agricultural Science and Technology support) (CE20212043), National Natural Science Foundation of China (51906021), and Technology Innovation Project of CHN ENERGY (GJNY-21-95).
  • 摘要: 结合矿源腐植酸(HA)产率高及生化HA活性高的特点,本研究提出将低阶煤与生物质共热氧化制备复合型HA(MIXHA)的想法。将黑龙江褐煤(HL)及麦秸秆(WS)的混合物(MIX)在10%的HNO3溶液中进行了共热氧化,制备了MIXHA。通过SEM、FT-IR、13C NMR等分析,重点从HA的宏观形貌及微观结构对比了MIXHA与HL、WS分别单独制备的矿源HA、生化HA,分析HL与WS在共热氧化过程的协同作用。结果表明,MIXHA含量高于理论值, HNO3分子的分解产生的活性氧原子、氮氧化物进攻HL与WS的分子结构,由于氢键重排、糖苷键断裂、交联等作用,WS纤维素与半纤维素产生的大量烷基自由基结合在HL缩合芳环上被氧化产生的醌基、羧基的邻对位,从而将芳香环上的质子碳转化为脂肪取代碳。得到的MIXHA含氧官能团丰富、活性高,FT-IR谱图具有明显的特征峰。本研究为低阶煤与农林废弃物的分级、资源化利用提供了一种新思路。
  • FIG. 2090.  FIG. 2090.

    FIG. 2090.  FIG. 2090.

    图  1  原料、OR、ER的SEM照片

    Figure  1  SEM images of raw materials, OR, and ER

    图  2  HA产品示意图

    Figure  2  HA product image

    图  3  不同HA的M

    Figure  3  M values of different HAs

    图  4  不同HA的FT-IR光谱谱图

    Figure  4  FT-IR spectra of different HAs

    图  5  不同HA的 FT-IR光谱的拟合曲线

    Figure  5  Fitting curves of FT-IR spectra of different HAs

    图  6  不同HA的 13C NMR分峰拟合模拟

    Figure  6  Peak fitting simulation of 13C NMR spectra of different HA

    表  1  原料的工业分析及元素分析

    Table  1  Proximate and ultimate analyses of raw materials

    SampleProximate analysis w/%Ultimate analysis wdaf/%
    MadAdVdafFCdafCHNSOa
    HL 24.82 21.10 49.75 50.25 72.39 5.50 0.70 0.62 26.29
    WS 10.55 10.43 79.63 20.37 50.05 7.30 0.57 0.02 42.06
    下载: 导出CSV

    表  2  OR中${\varphi}_{{\rm{HA}}}$及工业分析、元素分析

    Table  2  Proximate and ultimate analyses of OR

    Sample${\varphi}_{{\rm{HA}}}$Proximate analysis w /%Ultimate analysis wdaf/%
    MadAdVdafFCdafCHNSOa
    HLOR 51.65 4.89 49.57 72.79 27.21 71.58 6.53 5.16 0.31 16.41
    WSOR 13.84 7.62 0.87 83.81 16.19 42.88 5.40 0.97 0.00 50.75
    MIXOR 37.46 6.44 24.89 75.62 24.38 49.22 5.38 2.06 0.00 43.35
    下载: 导出CSV

    表  3  三种HA的工业分析、元素分析与含氧官能团含量

    Table  3  Proximate and ultimate analyses, and contents of O-containing functional groups in HA

    SampleProximate analysis w/% Ultimate analysis wdaf/% O-containing functional groups
    wdaf/(mmol·g−1)
    MadAdVdafFCdafCHNSOa−COOH−ph−OHtotal acidic
    groups
    HLHA4.7813.6361.2338.77 60.405.903.540.1829.982.502.915.41
    WSHA4.327.0162.5137.4950.045.683.820.0840.382.223.575.79
    MIXHA3.5914.4662.8237.18 59.305.713.750.2231.03 5.746.9812.72
    下载: 导出CSV

    表  4  不同HA中各含氧官能团面积百分比

    Table  4  Area percentage of oxygen-containing functional groups in FT-IR spectra

    Wavenumber
    /cm−1
    AssignmentArea percentage/%
    HLHAWSHAMIXHA
    1690−1720C−O,ketone,aldehyde and −COOH16.4012.7315.04
    1600−1660conjugated C=O6.4515.4621.87
    1450−1600aromatic C=C14.5613.243.23
    1375−1450CH3−Ar,CH3 and CH211.2914.9710.39
    1300−1375CH2−C=O9.956.285.83
    1100−1300C−O phenol21.2523.1220.46
    1000−1110ash,alkyl ethers,Si−O and aryl ethers20.1014.1823.18
    下载: 导出CSV

    表  5  HA中不同结构的碳在13C NMR谱中对应的化学位移及相对含量

    Table  5  Chemical shift and relative content of different types of carbons in HA

    Chemical shift δAssignmentArea percentage/%
    HLHAWSHAMIXHA
    15fat-methyl carbon9.623.661.38
    20aromatic-methyl carbon12.734.345.31
    25methylene carbon9.266.317.17
    31methylene carbon8.9620.9021.44
    42quaternary carbon, methine carbon3.662.00
    49quaternary carbon, methine carbon0.83
    56methoxy carbon1.173.644.56
    75oxygen to methine carbon8.5910.365.57
    84oxygen to methine carbon3.873.445.76
    89oxygen to methine carbon2.76
    107acetal ketal carbon3.816.591.83
    111aromatic proton carbon2.27
    116aromatic proton carbon4.186.274.48
    122aromatic bridgehead carbon3.63
    126aromatic bridgehead carbon4.904.27
    132alkyl aromatic carbon8.683.885.93
    135alkyl aromatic carbon1.77
    139alkyl aromatic carbon2.23
    142alkyl aromatic carbon1.26
    151aryl-O carbon7.2211.251.96
    155aryl-O carbon4.34
    160carboxyl and amide carbons1.06
    167carboxyl and amide carbons4.450.30
    176carboxyl and amide carbons6.369.619.19
    185aldehyde and ketone carbons1.866.37
    202aldehyde and ketone carbons2.050.69
    下载: 导出CSV

    表  6  不同HA的不同类型碳的分布

    Table  6  Distribution of different types of carbon in HA

    Chemical
    shift δ
    AssignmentArea percentage/%
    HLHAWSHAMIXHA_EMIXHA_T
    15 fal3 aliphatic methyl carbon 9.62 3.66 1.38 6.64
    20 fal3a aromatic methyl carbon 12.73 4.34 5.31 8.54
    25−31 fal2 methylene carbon 18.22 27.21 28.61 22.72
    35−50 fal1 fal* quaternary carbon, tertiary carbon 0 3.66 2.83 1.83
    50−95 falO aliphatic carbon attached to O 13.64 17.44 18.65 15.54
    95−110 falOO acetal ketal carbon 3.81 6.59 1.83 5.20
    110−120 faH aromatic proton carbon 6.45 6.27 4.48 6.36
    120−130 faB aromatic bridgehead carbon 4.90 3.63 4.27 4.27
    130−150 faS alkyl aromatic carbon 8.68 5.65 9.42 7.17
    150−160 faO aromatic carbon attached to O 7.22 11.25 6.30 9.24
    160−180 f COO carboxyl and amide carbons 10.81 9.61 10.55 10.21
    180−220 f CO aldehyde and ketone carbons 3.91 0.69 6.37 2.30
    f O carbon in oxygen-containing functional groups 35.59 38.99 41.87 37.29
    下载: 导出CSV
  • [1] 王苗, 李艳红, 张远琴, 訾昌毓, 梁光兵, 张殿凯, 赵文波. 不同溶剂提取宝清褐煤腐植酸的工艺优化及其特性研究[J]. 煤炭转化,2021,44(2):51−61.

    WANG Miao, LI Yan-hong, ZHANG Yuan-qin, ZI Chang-yu, LIANG Guang-bing, ZHANG Dian-kai, ZHAO Wen-bo. Study on process optimization and characteristics of humic acid extraction from Baoqing lignite with different solvents[J]. Coal Convers,2021,44(2):51−61.
    [2] 张彩凤, 李丽荣, 张树青, 王业娟, 王阳, 薛芬. 腐植酸对砷的吸附作用研究[J]. 燃料化学学报,2010,38(6):733−738. doi: 10.3969/j.issn.0253-2409.2010.06.018

    ZHANG Cai-feng, LI Li-rong, ZHANG Shu-qing, WANG Ye-juan, WANG Yang, XUE Fen. Adsorption of arsenic by humic acid[J]. J Fuel Chem Technol,2010,38(6):733−738. doi: 10.3969/j.issn.0253-2409.2010.06.018
    [3] 于晓东, 郭新送, 洪丕征, 陈士更, 朱福军, 孙昆, 丁方军. 不同配方腐植酸型土壤调理剂对滨海盐碱地土壤性质及小麦产量的影响[J]. 腐植酸,2019,(5):52−57.

    YU Xiao-dong, GUO Xin-song, HONG Pi-zheng, CHEN Shi-geng, ZHU Fu-jun, SUN Kun, DING Fang-jun. Effects of different humic acid soil conditioners on wheat yield and main properties of coastal alkali-saline soil[J]. Humic Acid,2019,(5):52−57.
    [4] SALATI S, PAPA G, ADANI F. Perspective on the use of humic acids from biomass as natural surfactants for industrial applications[J]. Biotechnol Adv,2011,29(6):913−922. doi: 10.1016/j.biotechadv.2011.07.012
    [5] ARAFAT R Y, KHAN S H, SAIMA. Evaluation of humic acid as an aflatoxin binder in broiler chickens[J]. Ann Anim Sci,2017,17(1):241−255. doi: 10.1515/aoas-2016-0050
    [6] 杨静, 何静, 丁亚芳, 庄文婷, 向诚, 秦谊, 李宝才. 云南昭通年青褐煤黄腐酸钠对血管新生作用的影响[J]. 天然产物研究与开发,2015,27(4):691−694+714.

    YANG Jing, HE Jing, DING Ya-fang, ZHUANG Wen-ting, XIANG Cheng, QIN Yi, LI Bao-cai. Angiogenesis effect of sodium fulvate extracted from young lignite of Zhaotong region in Yunnan province[J]. Nat Prod Res Dev,2015,27(4):691−694+714.
    [7] QIN Y, ZHANG M, DAI W F, XIANG C, LI B C, JIA Q M. Antidiarrhoeal mechanism study of fulvic acids based on molecular weight fractionation[J]. Fitoterapia,2019,137(3):104270.
    [8] 贺文强, 李斌, 宋剑峰. 矿物源腐植酸的活化[J]. 磷肥与复肥,2017,32(1):19−21. doi: 10.3969/j.issn.1007-6220.2017.01.008

    HE Wen-qiang, LI Bin, SONG Jian-feng. Activation of humic acid from mineral[J]. Phos Comp Fert,2017,32(1):19−21. doi: 10.3969/j.issn.1007-6220.2017.01.008
    [9] YUAN Y, LIU J P, CHEN Z, LI H C. Extraction study of nitro humic acid from lignite by dry and wet process[J]. Appl Mech Mater,2013,483:119−123. doi: 10.4028/www.scientific.net/AMM.483.119
    [10] MAE K, SHINDO H, MIURA K. A new two-step oxidative degradation method for producing valuable chemicals from low rank coals under mild conditions[J]. Energy fuels,2001,15(3):611−617. doi: 10.1021/ef000177e
    [11] 张水花, 李宝才, 张惠芬, 林雪飞, 刘建珍. H2O2氧解褐煤产腐植酸的试验研究[J]. 安徽农业科学,2012,40(15):8677−8679. doi: 10.3969/j.issn.0517-6611.2012.15.104

    ZHANG Shui-hua, LI Bao-cai, ZHANG Hui-fen, LIN Xue-fei, LIU Jian-zhen. Experimental study on the production of humic acids from brown coal using hydrogen peroxide[J]. J Anhui Agric Sci,2012,40(15):8677−8679. doi: 10.3969/j.issn.0517-6611.2012.15.104
    [12] ZHANG X Y, ZHEN W J, SUN M G. Green preparation process of fulvic acid from qitai weathered coal based on hydrothermal method[J]. Mod Chem Ind,2017,37(2):116−119.
    [13] 李建, 刘猛, 段钰锋, 许超. 污泥掺混褐煤水热制固体燃料的理化特性[J]. 浙江大学学报,2016,50(2):327−332+340.

    LI Jian, LIU Meng, DUAN Yu-feng, XU Chao. Physicochemical analysis on hydrothermal upgrading of sewage sludge with lignite for solid fuel[J]. J Zhejiang Univ,2016,50(2):327−332+340.
    [14] 钟世霞, 徐玉新, 骆洪义, 赵越, 郭祥, 李家家. 超声波活化风化煤腐植酸的影响研究[J]. 山东农业大学学报(自然科学版),2014,45(1):6−9+16.

    ZHONG Shi-xia, XU Yu-xin, LUO Hong-yi, ZHAO Yue, GUO Xiang, LI Jia-jia. Impact study of ultrasonic activation on humic acid in danty[J]. J Shandong Agric Univ (Nat Sci),2014,45(1):6−9+16.
    [15] 张敬东, 毛东萍, 刘加龙. 风化煤及轻变质煤的电化学氯化作用[J]. 腐植酸,1987,(4):31−34.

    ZHANG Jing-dong, MAO Dong-ping, LIU Jia-long. Electrochemical chlorination of weathered coal and light metamorphic coal[J]. Humic Acid,1987,(4):31−34.
    [16] 黄良仙, 韩星星, 马展, 陈桦, 王佳惠, 牛育华. 甘肃某地褐煤中腐植酸的提取工艺研究[J]. 陕西科技大学学报,2019,37(6):105−110. doi: 10.3969/j.issn.1000-5811.2019.06.017

    HUANG Liang-xian, HAN Xing-xing, MA Zhan, CHEN Hua, WANG Jia-hui, NIU Yu-hua. Study on the extraction technology of humic acid from the lignite in a place of Gansu province[J]. J Shaanxi Univ Sci,2019,37(6):105−110. doi: 10.3969/j.issn.1000-5811.2019.06.017
    [17] 袁蕊, 王学江, 李峰. 风化煤氧化改性对其提取物腐植酸钾抗硬水性能影响[J]. 磷肥与复肥,2018,33(11):4−6. doi: 10.3969/j.issn.1007-6220.2018.11.003

    YUAN Rui, WANG Xue-jiang, LI Feng. Effect of oxidation modification of weathered coal on resistance to hard water of its extract potassium humate[J]. Phos Comp Fert,2018,33(11):4−6. doi: 10.3969/j.issn.1007-6220.2018.11.003
    [18] 李斌斌, 吴诗勇, 吴幼青, 黄胜, 高晋生. 稻秸秆硝解制备黄腐酸和腐植酸研究[J]. 华东理工大学学报(自然科学版),2021,47(2):189−194.

    LI Bin-bin, WU Shi-yong, WU You-qing, HUANG Sheng, GAO Jin-sheng. Preparation of fulvic acid and humic acid by nitric acid oxidized rice straw[J]. J East Chin Univ Sci Technol (Nat Sci),2021,47(2):189−194.
    [19] YANG F, ZHANG S, CHENG K, ANTONIETTI M. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation[J]. Sci Total Environ,2019,686:1140−1151. doi: 10.1016/j.scitotenv.2019.06.045
    [20] 吕品, 于志民, 马献发. 低酸催化水解稻草制备腐植酸的工艺研究[J]. 腐植酸,2011,(2):16−23. doi: 10.3969/j.issn.1671-9212.2011.02.005

    LV Pin, YU Zhi-min, MA Xian-fa. Technical study on preparation of humic acid through hydrolyzing straw under catalysis of low-concentration of acid[J]. Humic Acid,2011,(2):16−23. doi: 10.3969/j.issn.1671-9212.2011.02.005
    [21] 李善祥. 腐植酸产品分析及标准[M]. 北京: 化学工业出版社, 2007.

    LI Shan-xiang. Humic Acid Product Analysis and Standards[M]. Beijing: Chemical Industry Press, 2007.
    [22] 杨天华, 孙海朋, 孙洋, 开兴平, 李杰, 李润东. 脱灰预处理对水稻秸秆物化性/水蒸气气化反应特性的影响[J]. 燃料化学学报,2015,43(5):598−606.

    YANG Tian-hua, SUN Hai-peng, SUN Yang, KAI Xing-ping, LI Jie, LI Run-dong. Effects of deashing pretreatment on physicochemical properties and steam gasification characteristics of Rice straw[J]. J Fuel Chem Technol,2015,43(5):598−606.
    [23] 张文达, 王鹏翔, 孙绍增, 赵义军, 赵虹翔, 严泰森, 吴江全. 酸洗脱灰对准东次烟煤结构和反应活性的影响[J]. 化工学报,2017,68(8):3291−3300.

    ZHANG Wen-da, WANG Peng-xiang, SUN Shao-zeng, ZHAO Yi-jun, ZHAO Hong-xiang, YAN Tai-sen, WU Jiang-quan. Effect of acid pickling deashing on structure and Reactivity of quasi-eastern sub-bituminous coal[J]. J Chem Ind Eng,2017,68(8):3291−3300.
    [24] 阳虹, 李永生, 范云场, 张磊. 风化煤中腐植酸的提取及其光谱学研究[J]. 煤炭转化,2013,36(2):87−91. doi: 10.3969/j.issn.1004-4248.2013.02.022

    YANG Hong, LI Yong-sheng, FAN Yun-chang, ZHANG Lei. Humic acid extraction from weathered coal and its spectroscopic research[J]. Coal Convers,2013,36(2):87−91. doi: 10.3969/j.issn.1004-4248.2013.02.022
    [25] LI C Z, SATHE C, KERSHAW J R, PANG Y. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J]. Fuel,2000,79(3/4):427−438. doi: 10.1016/S0016-2361(99)00178-7
    [26] 任麒帆, 刘海飞, 李洋, 许美玲, 张会平, 冯梦喜. 浅谈矿物源腐植酸的理化性质、活化提取及应用展望[J]. 腐植酸,2021,(4):7−12.

    REN Qin-fan, LIU Hai-fei, LI Yang, XU Mei-ling, ZHANG Hui-ping, FENG Meng-xi. Talking about the physical and chemical properties, activation extraction and application prospects of mineral humic acid[J]. Humic Acid,2021,(4):7−12.
    [27] 马连刚, 肖保华. 土壤腐殖质提取和分组综述[J]. 矿物岩石地球化学通报,2011,30(4):465−471.

    MA Lian-gang, XIAO Bao-hua. Review on extraction and grouping of soil humus[J]. Bull Min, Petr Geochem,2011,30(4):465−471.
    [28] 路亚楠, 王晓霞, 马力通. 液体酸对碱溶酸析法提取泥炭腐植酸光谱学变化特征的影响[J]. 光谱学与光谱分析,2020,40(2):574−578.

    LU Ya-nan, WANG Xiao-xia, MA Li-tong. Effects of liquid acid on the spectral characteristics during peat humic acid extracted by alkali-extraction acid-precipitation method[J]. Spectrosc Spect Anal,2020,40(2):574−578.
    [29] NASIR S, SARFARAZ T B, VERHEYEN T V, CHAFFEE A L. Structural elucidation of humic acids extracted from Pakistani lignite using spectroscopic and thermal degradative techniques[J]. Fuel Process Technol,2011,92(5):983−991. doi: 10.1016/j.fuproc.2010.12.020
    [30] ZHANG Z Q, GAO Q, XIE Z L, YANG J M, LIU J H. Adsorption of nitrification inhibitor nitrapyrin by humic acid and fulvic acid in black soil: characteristics and mechanism[J]. RSC Adv,2020,11(1):114−123.
    [31] EVANGELOU V P, MARSI M, CHAPPELL M A. Potentiometric-spectroscopic evaluation of metal-ion complexes by humic fractions extracted from corn tissue[J]. Spectrochim Acta, Part A,2002,58(10):2159−2175. doi: 10.1016/S1386-1425(01)00690-4
    [32] FOOKEN U, LIEBEZEIT G. An IR study of humic acids isolated from sediments and soils[J]. Mar Biodivers,2003,32(1):183−189.
    [33] LIN Y, MUOROE P, JOSEPH S, HENDERSON R, ZIOLKOWSKI A. Water extractable organic carbon in untreated and chemical treated biochars[J]. Chemosphere,2012,87(2):151−157. doi: 10.1016/j.chemosphere.2011.12.007
    [34] YAN L J, BAI Y H, ZHAO R F, LI F, XIE K. Correlation between coal structure and release of the two organic compounds during pyrolysis[J]. Fuel,2015,145:12−17. doi: 10.1016/j.fuel.2014.12.056
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  545
  • HTML全文浏览量:  89
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-20
  • 修回日期:  2022-05-06
  • 录用日期:  2022-05-09
  • 网络出版日期:  2022-06-09
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回