留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2强化水洗对生物炭脱灰影响及作用机理研究

张硕 班延鹏 闻育新 朱家龙 王一鸣 胡浩权 靳立军

张硕, 班延鹏, 闻育新, 朱家龙, 王一鸣, 胡浩权, 靳立军. CO2强化水洗对生物炭脱灰影响及作用机理研究[J]. 燃料化学学报(中英文), 2023, 51(4): 554-561. doi: 10.1016/S1872-5813(22)60059-8
引用本文: 张硕, 班延鹏, 闻育新, 朱家龙, 王一鸣, 胡浩权, 靳立军. CO2强化水洗对生物炭脱灰影响及作用机理研究[J]. 燃料化学学报(中英文), 2023, 51(4): 554-561. doi: 10.1016/S1872-5813(22)60059-8
ZHANG Shuo, BAN Yan-peng, WEN Yu-xin, ZHU Jia-long, WANG Yi-ming, HU Hao-quan, JIN Li-jun. Removal of ash in biochar from carbonization by CO2-enhanced water leaching and its mechanism[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 554-561. doi: 10.1016/S1872-5813(22)60059-8
Citation: ZHANG Shuo, BAN Yan-peng, WEN Yu-xin, ZHU Jia-long, WANG Yi-ming, HU Hao-quan, JIN Li-jun. Removal of ash in biochar from carbonization by CO2-enhanced water leaching and its mechanism[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 554-561. doi: 10.1016/S1872-5813(22)60059-8

CO2强化水洗对生物炭脱灰影响及作用机理研究

doi: 10.1016/S1872-5813(22)60059-8
基金项目: 国家自然科学基金(21878044)和中央高校基本科研业务费(DUT21TD103)资助
详细信息
    通讯作者:

    Tel: 0411-84986160, E-mail: ljin@dlut.edu.cn

  • 中图分类号: TK6

Removal of ash in biochar from carbonization by CO2-enhanced water leaching and its mechanism

Funds: The project was supported by the National Natural Science Foundation of China (21878044) and the Fundamental Research Funds for the Central Universities (DUT21TD103)
  • 摘要:

    本实验提出一种先炭化后CO2强化水洗的脱灰方法,选用甘蔗渣考察了生物炭的制备温度、CO2强化水洗温度及时间对脱灰效果的影响。结果表明,炭化温度升高,脱灰率呈先增加后降低的趋势,而水洗温度升高和时间的延长则趋势相反,对于300 ℃甘蔗渣炭,经40 ℃水洗4 h脱灰率可达57%。与炭化前水洗脱灰相比,先炭化后脱灰使甘蔗渣热解炭的固定碳含量和炭收率分别提高7%和3%。分析认为,在脱灰过程中,CO2通入水中扩散溶解形成碳酸,与部分盐反应形成溶于水的盐类,K、Na和Ca脱除率超过50%,部分方解石、白云石被脱除。该过程较单独水洗显示出较高的脱灰率和普适性,但是脱灰率与生物炭的灰分组成和类型相关,对花生壳、杨木热解炭脱灰率均超过30%。

  • FIG. 2215.  FIG. 2215.

    FIG. 2215.  FIG. 2215.

    图  1  甘蔗渣的TG-DTG失重曲线

    Figure  1  TG-DTG curves of bagasse sample

    图  2  炭化温度对灰含量及CO2强化水洗脱灰性能的影响

    Figure  2  Effect of carbonization temperature on ash content in BGC and BGC-CO2 samples

    图  3  炭化温度对脱灰率及炭收率的影响

    Figure  3  Effect of carbonization temperature on deashing rate and char yield

    图  4  CO2强化水洗脱灰温度对脱灰率及炭收率的影响

    Figure  4  Effect of CO2-enhanced water leaching temperature on deashing rate and char yield

    图  5  CO2强化水洗时间对脱灰率及炭收率的影响

    Figure  5  Effect of CO2-enhanced water leaching time on deashing rate and char yield

    图  6  300 ℃蔗渣半焦灰样脱灰前后的灰成分组成分析及脱除率

    Figure  6  Ash composition analysis in biochar from bagasse pyrolysis at 300 ℃ before and after CO2-enhanced deashing

    图  7  300 ℃甘蔗渣生物炭灰样脱灰前后的XRD谱图

    Figure  7  XRD patterns of BGC-A and BGC-CO2-A at 300 ℃

    图  8  不同生物炭脱灰前后灰分含量变化

    Figure  8  Ash content of different biochars before and after deashing

    表  1  生物质原样的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of raw biomass

    SampleProximate analysis w/%Ultimate analysis wdaf/%
    MadAdVdafCHNSO*
    BG2.712.3680.6152.066.590.950.1240.28
    PS2.802.1880.4050.485.931.7941.80
    RS4.2412.4279.3143.036.162.3948.42
    PP1.3610.4783.8546.285.750.9047.06
    ad:air dry basis;d:dry basis;daf:dry ash-free basis; *:by difference;−:no detected
    下载: 导出CSV

    表  2  甘蔗渣主要元素及限量元素XRF分析

    Table  2  XRF analysis of main and trace elements in bagasse

    ElementSiCaKFeMgAlNiMnNaTi
    Content w/%24.329.447.816.663.332.080.650.310.230.18
    ElementBaZnCrCuPbBa
    Content w/%0.0820.0640.0340.0290.0280.082
    下载: 导出CSV

    表  3  300与500 ℃热解甘蔗渣炭的孔结构性质

    Table  3  Structure and properties of bagasse biochar obtained at 300 and 500 ℃

    SampleSBET/
    (m2·g−1)
    vt /
    (cm3·g−1)
    dave/
    nm
    BGC-3003.30.01910.64
    BGC-500228.00.1404.56
    下载: 导出CSV

    表  4  炭化处理对有机质固定及脱灰效率的影响

    Table  4  Effect of carbonization treatment on fixation of organic matter and deashing efficiency

    SampleProximate analysis w/%Deashing rate/char yield /%
    MadAdVdafFCa,adΦδ1δ2η
    BGC-CO20.852.9149.4148.7056.9738.0486.3632.85
    BG-CO2-C1.323.5753.7941.3224.7534.3785.8229.50
    下载: 导出CSV

    表  5  不同生物质炭化、脱灰处理收率

    Table  5  Summary of char yield from carbonization and deashing of different biomasses

    Yield /%BGPSRSPP
    δ138.0447.9656.0549.96
    δ286.3685.1482.8382.98
    η32.8540.8346.4341.46
    下载: 导出CSV
  • [1] FENG D, WANG S, ZHANG Y, ZHAO Y, SUN S, CHANG G, LAI X, TAN H, QIN Y. Review of carbon fixation evaluation and emission reduction effectiveness for biochar in China[J]. Energy Fuels,2020,34(9):10583−10606. doi: 10.1021/acs.energyfuels.0c02396
    [2] 刘洋, 洪亚楠, 姚艳丽, 徐磊, 邢淑莲, 胡小文, 高玉尧. 中国甘蔗渣综合利用现状分析[J]. 热带农业科学,2017,37(2):91−95.

    LIU Yang, HONG Ya-nan, YAO Yan-li, XU Lei, XING Shu-lian, HU Xiao-wen, GAO Yu-rao. Research progress in comprehensive utilization of bagasse in China[J]. Chin J Trop Agric,2017,37(2):91−95.
    [3] LIU Z, QUEK A, HOEKMAN S, BALASUBRAMANIAN R. Production of solid biochar fuel from waste biomass by hydrothermal carbonization[J]. Fuel,2013,103:943−949. doi: 10.1016/j.fuel.2012.07.069
    [4] LIU Z, BALASUBRAMANIAN R. A comparison of thermal behaviors of raw biomass, pyrolytic biochar and their blends with lignite[J]. Bioresour Technol,2013,146:371−378. doi: 10.1016/j.biortech.2013.07.072
    [5] LIU Z, BALASUBRAMANIAN R. A comparative study of nitrogen conversion during pyrolysis of coconut fiber, its corresponding biochar and their blends with lignite[J]. Bioresour Technol,2014,151:85−90. doi: 10.1016/j.biortech.2013.10.043
    [6] NIU Y, TAN H, SHI'EN H. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Prog Energy Combust Sci,2016,52(Feb.):1−61.
    [7] ABDULLAH H, WU H. Biochar as a fuel: 1. Properties and grind ability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions[J]. Energy Fuels,2009,23(4):3592−3599.
    [8] 王茜, 韩奎华, 李辉, 齐建荟, 路春美. O2/CO2气氛下稻秆添加磷酸二氢铵对固钾及灰熔融特性的研究[J]. 燃料化学学报.,2015,43(8):955−960.

    WANG Qian, HAN Kui-hua, LI Hui, QI Jian-hui, LU Chun-mei. Influence of ammonium dihydrogen phosphates additive on potassium fixation capacity and ash fusibility for rice straw combustion in an O2/CO2 atmosphere[J]. J Fuel Chem Technol,2015,43(8):955−960.
    [9] 于志浩, 金晶, 张瑞璞, 赵冰, 朱以周, 王光绪. 白云石添加剂对稻秆灰熔融特性及固钾能力的影响[J]. 燃料化学学报,2020,48(7):795−803.

    YU Zhi-hao, JIN Jing, ZHANG Rui-pu, ZHAO Bing, ZHU Yi-zhou, WANG Guang-xu. Influence of dolomite additive on the ash fusion and potassium fixation characteristics of rice straw[J]. J Fuel Chem Technol,2020,48(7):795−803.
    [10] NIU Y, TAN H, SHI'EN H. Ash-related issues during biomass combustion[J]. Prog Energy Combust Sci,2016,52:1−61. doi: 10.1016/j.pecs.2015.09.003
    [11] SAID N, BISHARA T, GARCIA-MARAVER A, ZAMORANO M. Effect of water washing on the thermal behavior of rice straw[J]. Waste Manage,2013,33(11):2250−2256. doi: 10.1016/j.wasman.2013.07.019
    [12] CARRILLO M, STAGGENBORG S, PINEDA J. Washing sorghum biomass with water to improve its quality for combustion[J]. Fuel,2014,116:427−431. doi: 10.1016/j.fuel.2013.08.028
    [13] DENG L, JIN X, LONG J, CHE D. Ash deposition behaviors during combustion of raw and water washed biomass fuels[J]. J Energy Inst,2019,92(4):959−970. doi: 10.1016/j.joei.2018.07.009
    [14] HAN S, BAI L, CHI M, XU X, CHEN Z, YU K. Conversion of waste corn straw to value-added fuel via hydrothermal carbonization after acid washing[J]. Energies,2022,15(5):1828−1828. doi: 10.3390/en15051828
    [15] 孙铭跃, 熊钊, 李显, 胡振中, 童珊, 刘欢, 胡红云, 罗光前, 姚洪. 生物质废弃物的烟气强化水洗脱碱研究[J]. 工程热物理学报,2021,42(12):3060−3065.

    SUN Ming-yue, XIONG Zhao, LI Xian, HU Zhen-zhong, TONG Shan, LIU Huan, HU Hong-yun, LUO Guang-qian, YAO Hong. AAEM removal from biomass wastes through water leaching enhanced by flue gas[J]. J Eng Thermophys,2021,42(12):3060−3065.
    [16] STELT M, GERHAUSER H, KIEL J, PTASINSKI K. Biomass upgrading by torrefaction for the production of biofuels: A review[J]. Biomass Bioenergy,2011,35(9):3748−3762.
    [17] LIAW S, WU H. Leaching characteristics of organic and inorganic matter from biomass by water: Differences between batch and semi-continuous operations[J]. Ind Eng Chem Res,2013,52(11):4280−4289.
    [18] LONG J, DENG L, CHE D. Analysis on organic compounds in water leachate from biomass[J]. Renewable Energy,2020,155:1070−1078.
    [19] DENG L, LONG J, WU Y, CHE D. A study on benzene release during water washing of biomass[J]. Asia-Pac J Chem Eng,2020,15(6):e2536.
    [20] JENSEN P, SANDER B, DAM-JOHANSEN K. Pretreatment of straw for power production by pyrolysis and char wash[J]. Biomass Bioenergy,2001,20(6):431−446. doi: 10.1016/S0961-9534(01)00005-8
    [21] ABELHA P, YILELA C, NANOU P, CARBO M, JANSSEN A, LEISER S. Combustion improvements of upgraded biomass by washing and torrefaction[J]. Fuel,2019,253:1018−1033.
    [22] LIU Z, S. K H, RAJASEKHAR B, ZHANG F. Improvement of fuel qualities of solid fuel biochars by washing treatment[J]. Fuel Process Technol,2015,134:130−135. doi: 10.1016/j.fuproc.2015.01.025
    [23] JENSEN P, SANDER B, DAM-JOHANSEN K. Removal of K and Cl by leaching of straw char[J]. Biomass Bioenergy,2001,20(6):447−457. doi: 10.1016/S0961-9534(01)00006-X
    [24] SANGEETA M, E M, PINAKI S, SIDDHARTH B. Biochar washing to improve the fuel quality of agro-industrial waste biomass[J]. J. Energy Inst, 2022.
    [25] 李扬, 鲁子龙, 杨赫, 靳立军, 胡浩权. 煤灰化过程中砷/硒/铅的释放及矿物的变化规律[J]. 燃料化学学报.,2022,50(1):11−18. doi: 10.1016/S1872-5813(21)60115-9

    LI Yang, LU Zi-long, YANG He, JIN Li-jun, HU Hao-quan. Release characteristics of arsenic, selenium, lead and transformation of minerals during ashing process of coal[J]. J Fuel Chem Technol,2022,50(1):11−18. doi: 10.1016/S1872-5813(21)60115-9
    [26] RASOOL T, SRIVASTAVA V, KHAN M. Utilisation of a waste biomass, walnut shells, to produce bio-products via pyrolysis: investigation using ISO-conversional and neural network methods[J]. Biomass Convers Biorefin,2018,8(3):647−657. doi: 10.1007/s13399-018-0311-0
    [27] YANG X, KANG K, QIU L, ZHAO L, SUN R. Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches[J]. Renewable Energy,2020,146(C):1691−1699.
    [28] ZHANG P, SUN H, REN C, MIN L, ZHANG H. Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption[J]. Environ Pollut,2018,234:812−820. doi: 10.1016/j.envpol.2017.12.013
    [29] RIVERA R, GERVEN T. Production of calcium carbonate with different morphology by simultaneous CO2 capture and mineralisation[J]. J CO2 Util,2020,41:101241. doi: 10.1016/j.jcou.2020.101241
    [30] 何燧源等. 环境化学[M]. 第三版. 上海: 华东理工大学出版社, 2000.

    HE Sui-yuan. Environmental Chemistry[M]. 3nd ed. Shanghai: East China University of Science and Technology Press, 2000.
    [31] 梁晓杰. 钢渣和水泥碳化与水化关系研究[D]. 济南: 济南大学, 2012.

    LIANG Xiao-jie. Studies on relationship of carbonation with hydration of steel slag and cement[D]. Jinan: University of Jinan, 2012.
    [32] 杜昀聪, 伊元荣, 白书齐, 马忠乐, 方明航, 马文青. LF精炼渣碳酸化过程Ca赋存状态转变[J]. 钢铁研究学报,2020,32(3):195−203.

    DU Yu-cong, YI Yuan-rong, BAI Shu-qi, MA Zhong-le, FANG Ming-hang, MA Wen-qing. Change of Ca occurrence state in carbonation process of LF refining slag[J]. J Fuel Chem Technol,2020,32(3):195−203.
    [33] LIAW S B, WU H W. Leaching characteristics of organic and inorganic matter from biomass by water: Differences between batch and semi-continuous operations[J]. Ind Eng Chem Res, 2013, 52(11).
    [34] HOSSEIN B, THOMAS Z, HIERONYMUS H, JENS B, GERT K, DIRK E. Ash transformation mechanism during combustion of rice husk and rice straw[J]. Fuel,2022,307:121768.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  1215
  • HTML全文浏览量:  219
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-06-28
  • 录用日期:  2022-07-14
  • 网络出版日期:  2022-09-08
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回