留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of metal doping on the catalytic performance of LaFe-based perovskites for CO2 hydrogenation to light olefins

MA Li-hai GAO Xin-hua ZHANG Jian-li MA Jing-jing HU Xiu-de GUO Qing-jie

马利海, 高新华, 张建利, 马晶晶, 胡修德, 郭庆杰. 金属掺杂对LaFe基钙钛矿催化CO2加氢制低碳烯烃性能影响[J]. 燃料化学学报(中英文), 2023, 51(1): 101-110. doi: 10.1016/S1872-5813(22)60063-X
引用本文: 马利海, 高新华, 张建利, 马晶晶, 胡修德, 郭庆杰. 金属掺杂对LaFe基钙钛矿催化CO2加氢制低碳烯烃性能影响[J]. 燃料化学学报(中英文), 2023, 51(1): 101-110. doi: 10.1016/S1872-5813(22)60063-X
MA Li-hai, GAO Xin-hua, ZHANG Jian-li, MA Jing-jing, HU Xiu-de, GUO Qing-jie. Effects of metal doping on the catalytic performance of LaFe-based perovskites for CO2 hydrogenation to light olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 101-110. doi: 10.1016/S1872-5813(22)60063-X
Citation: MA Li-hai, GAO Xin-hua, ZHANG Jian-li, MA Jing-jing, HU Xiu-de, GUO Qing-jie. Effects of metal doping on the catalytic performance of LaFe-based perovskites for CO2 hydrogenation to light olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 101-110. doi: 10.1016/S1872-5813(22)60063-X

金属掺杂对LaFe基钙钛矿催化CO2加氢制低碳烯烃性能影响

doi: 10.1016/S1872-5813(22)60063-X
详细信息
  • 中图分类号: TQ546

Effects of metal doping on the catalytic performance of LaFe-based perovskites for CO2 hydrogenation to light olefins

Funds: The project was supported by the Key Project of Natural Science Foundation of Ningxia (2022AAC02002) and the National Natural Science Foundation of China (U20A20124)
More Information
  • 摘要: 通过溶胶-凝胶法和浸渍法制备K/LaFeBO3 (B =Cu、Zr、Al、Mn、Ni、Zn)钙钛矿催化剂,结合SEM、XRD、BET、H2-TPR、CO2-TPD、TG、XPS等表征,探究了金属掺杂对LaFe基钙钛矿催化CO2加氢制备低碳烯烃性能的影响。结果表明,Cu和Zn的加入有利于提高Fe分散度并降低还原温度,同时低温下氢的脱附增加且碱性位增多。氧空位迁移变化对催化活性和烯烃选择性有重要影响,当Cu和Zn在B位取代Fe时,氧迁移率增加明显,具有较低结合能的表面晶格氧富集,显著提高了催化活性,促进了低碳烯烃生成。
  • Figure  1  Schematics of chemical looping coupled hydrogenation process

    Figure  2  XRD patterns of the calcined catalyst samples

    Figure  3  SEM images of LaFeO3 ((a), (b)), LaFeMnO3 (c), LaFeCuO3 (d), LaFeAlO3 (e), LaFeZrO3 (f), LaFeZnO3 (g) and LaFeNiO3 (h)

    Figure  4  N2 adsorption-desorption isotherms of various samples

    Figure  5  H2-TPR profiles of the LaFeBO3 samples

    Figure  6  CO2-TPD profiles of the catalyst samples

    Figure  7  TG analysis of the catalyst samples

    Figure  8  Survey XPS profiles of LaFeBO3 samples

    Figure  9  XPS spectra of O 1s for different samples

    LaFeO3 (a), LaFeCuO3 (b), LaFeAlO3 (c), LaFeZrO3 (d), LaFeZnO3 (e), LaFeNiO3 (f), and LaFeMnO3 (g)

    Figure  10  XPS spectra of Fe 2p for different samples

    Table  1  Crystalline size of various catalyst samples

    CatalystCrystalline size/nmaLattice parameter/ Å
    LaFeO3963.5628
    LaFeMnO314.83.8754
    LaFeCuO330.83.8903
    LaFeAlO3-16.74.4676
    LaFeZrO322.83.6622
    LaFeZnO328.94.6819
    LaFeNiO329.86.4846
    a: Caculated by Scherrer equation
    下载: 导出CSV

    Table  2  Texture properties of LaFeBO3 catalyst samples

    CatalystaBET/
    (m2·g−1)b
    Vtotal/
    (cm3·g−1)
    Average pore
    diameterc/nm
    LaFeO311.50.11840.96
    LaFeMnO327.50.10815.68
    LaFeCuO33.80.02324.83
    LaFeAlO3−2.10.01426.74
    LaFeZrO33.40.01112.55
    LaFeZnO34.20.0109.58
    LaFeNiO39.50.07129.80
    a: Fresh samples, b: BET desorption cumulative volume,
    c: BET desorption average pore diameter
    下载: 导出CSV

    Table  3  Surface composition of the catalysts determined by XPS

    SampleSurface element content wmol/%Fe/BFe/B*
    FeOB
    LaFeMnO33.8159.014.090.930.69
    LaFeCuO35.8759.296.090.960.98
    LaFeAlO34.1560.16.030.690.59
    LaFeZrO34.7754.958.020.590.53
    LaFeZnO33.857.414.670.810.87
    LaFeNiO37.4859.748.050.930.89
    * Determined by ICP
    下载: 导出CSV

    Table  4  Catalytic activity of different catalysts

    Catalyst sampleCO2 conv. /%CO sel. /%
    Hydrocarbon distribution C/%O/P
    CH4${\rm{C} }_{2}^= - {\rm{C} }_{4}^=$${\rm{C} }_{2}^{0} - {\rm{C} }_{4}^{0}$C5+
    K/LaFeO35.624.290.409.600
    K/LaFeMnO325.385.051.619.315.114.11.3
    K/LaFeCuO335.662.341.327.222.78.81.2
    K/LaFeZrO37.481.577.814.18.101.5
    K/LaFeAlO38.287.678.910.011.100.9
    K/LaFeNiO330.380.369.910.99.3101.2
    K/LaFeZnO348.525.715.6241.016.926.52.4
    Reaction conditions: H2/CO2 = 3, 320 °C, 2.0 MPa, 1000 h−1 and TOS=24 h
    下载: 导出CSV
  • [1] DO T N, KIM J. Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis[J]. Energy Convers Manage,2020,214:112866. doi: 10.1016/j.enconman.2020.112866
    [2] GAO P, DANG S S, LI S G, BU X N, LIU Z Y, QIU M H, YANG C G, WANG H, ZHONG L S, HAN Y, LIU Q, WEI W, SUN Y H. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal,2018,8(1):571−578. doi: 10.1021/acscatal.7b02649
    [3] WANG D, XIE Z H, POROSOFF M D, CHEN J G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics[J]. Chem,2021,7(9):2277−2311. doi: 10.1016/j.chempr.2021.02.024
    [4] ZHU H Y, ZHANG P F, DAI S. Recent advances of lanthanum-based perovskite oxides for catalysis[J]. ACS Catal,2015,5(11):6370−6385. doi: 10.1021/acscatal.5b01667
    [5] LI D Y, XU R D, LI X Y, LI Z Q, ZHU X, LI K Z. Chemical looping conversion of gaseous and liquid fuels for chemical production: A review[J]. Energy Fuels,2020,34(5):5381−5413. doi: 10.1021/acs.energyfuels.0c01006
    [6] QIU Y, MA L, ZENG D W, LI M, CUI D X, LV Y L, ZHANG S, XIAO R. Efficient CO2 to CO conversion at moderate temperatures enabled by the cobalt and copper co-doped ferrite oxygen carrier[J]. J Energy Chem,2020,46:123−132. doi: 10.1016/j.jechem.2019.10.025
    [7] SHARMA P, ELDER T, GROOM L H, SPIVEY J J. Effect of structural promoters on Fe-Based Fischer-Tropsch synthesis of biomass derived syngas[J]. Top Catal,2013,57(6/9):526−537.
    [8] TIEN THAO N, SON L T. Production of cobalt-copper from partial reduction of La(Co, Cu)O3 perovskites for CO hydrogenation[J]. J Sci-Adv Mater and Dev,2016,1(3):337−342.
    [9] LIU Y, CHEN J F, BAO J, ZHANG Y. Manganese-modified Fe3O4microsphere catalyst with effective active phase of forming light olefins from syngas[J]. ACS Catal,2015,5(6):3905−3909. doi: 10.1021/acscatal.5b00492
    [10] ZHAN H J, LI F, GAO P, ZHAO N, XIAO F K, WEI W, ZHONG L S, SUN Y. Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M=Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors[J]. J Power Sources,2014,251:113−121. doi: 10.1016/j.jpowsour.2013.11.037
    [11] DING J, ZHAO W X, ZI L T, XU X, LIU Q, ZHONG Q, XU Y. Promotional effect of ZrO2 on supported FeCoK catalysts for ethylene synthesis from catalytic CO2 hydrogenation[J]. Int J Hydrogen Energy,2020,45(30):15254−15262. doi: 10.1016/j.ijhydene.2020.03.249
    [12] ELISHAV O, SHENER Y, BEILIN V, LANDAU M V, HERSKOWITZ M, SHTER G E, GRADER G S. Electrospun Fe-Al-O nanobelts for selective CO2 hydrogenation to light olefins[J]. ACS Appl Mater Inter,2020,12(22):24855−24867. doi: 10.1021/acsami.0c05765
    [13] GAO Q, MENG J, YANG Y, LIN Q Y, LU Y F, WEI X, LI J X, HAN G R, ZHANG Z. Zirconium doping in calcium titanate perovskite oxides with surface nanostep structure for promoting photocatalytic hydrogen evolution[J]. Appl Surf Sci,2021,542:148544. doi: 10.1016/j.apsusc.2020.148544
    [14] WEI C Y, TU W F, JIA L Y, LIU Y Y, LIAN H L, WANG P, ZHANG Z Z. The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins[J]. Appl Surf Sci,2020,525:146622. doi: 10.1016/j.apsusc.2020.146622
    [15] HARE B J, MAITI D, RAMANI S, RAMOS A E, BHETHANABOTLA V R, KUHN J N. Thermochemical conversion of carbon dioxide by reverse water-gas shift chemical looping using supported perovskite oxides[J]. Catal Today,2019,323:225−232. doi: 10.1016/j.cattod.2018.06.002
    [16] LINDENTHAL L, POPOVIC J, RAMESHAN R, HUBER J, SCHRENK F, RUH T, NENNING A, LÖFFLER S, OPITZ A K, RAMESHAN C. Novel perovskite catalysts for CO2 utilization-exsolution enhanced reverse water-gas shift activity[J]. Appl Catal B: Environ,2021,292:120183. doi: 10.1016/j.apcatb.2021.120183
    [17] LINDENTHAL L, RAMESHAN R, SUMMERER H, RUH T, POPOVIC J, NENNING A, LÖFFLER S, OPITZ A K, BLAHA P, RAMESHAN C. Modifying the surface structure of perovskite-based catalysts by nanoparticle exsolution[J]. Catalysts,2020,10(3):268−282. doi: 10.3390/catal10030268
    [18] CHANG H, BJØRGUM E, MIHAL O, YANG J, LEIN H L, GRANDE T, RAAEN S, ZHU Y A, HOLMEN A, CHEN D. Effects of oxygen mobility in La-Fe-based perovskites on the catalytic activity and selectivity of methane oxidation[J]. ACS Catal,2020,10(6):3707−3719. doi: 10.1021/acscatal.9b05154
    [19] WU J X, ZHENG Y S, DACQUIN J P, DJELAL N, CORDIER C, DUJARDIN C, GRANGER P. Impact of dual calcium and manganese substitution of La-deficient perovskites on structural and related catalytic properties: Future opportunities in next three-way-catalyst generation[J]. Appl Catal A: Gen,2021,619:118137. doi: 10.1016/j.apcata.2021.118137
    [20] ABBAS M, ZHANG J, MANSOUR T S, CHEN J G. Hierarchical porous spinel MFe2O4 (M=Fe, Zn, Ni and Co) nanoparticles: Facile synthesis approach and their superb stability and catalytic performance in Fischer-Tropsch synthesis[J]. Int J Hydrogen Energy,2020,45(18):10754−10763. doi: 10.1016/j.ijhydene.2020.02.044
    [21] YANG Q L, LIU G L, LIU Y. Perovskite-type oxides as the catalyst precursors for preparing supported metallic nanocatalysts: A review[J]. Ind Eng Chem Res,2018,57(1):1−17. doi: 10.1021/acs.iecr.7b03251
    [22] WU M D, CHEN S Y, XIANG W G. Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides[J]. Chem Eng J,2020,387:124101. doi: 10.1016/j.cej.2020.124101
    [23] FANG Y Z, LIU Y, ZHANG L H. LaFeO3-supported nano Co-Cu catalysts for higher alcohol synthesis from syngas[J]. Appl Catal A: Gen,2011,397(1/2):183−191.
    [24] YIN K J, SHEN Y L. Theoretical insights into CO2 hydrogenation to HCOOH over FexZr1-xO2 solid solution catalyst[J]. Appl Surf Sci,2020,528:146926. doi: 10.1016/j.apsusc.2020.146926
    [25] SIM Y, KWON D, ANA S, HAB J M, OHC T S, JUNG J H. Catalytic behavior of ABO3 perovskites in the oxidative coupling of methane[J]. Mol Catal,2020,489:110925. doi: 10.1016/j.mcat.2020.110925
    [26] SHESHKO T F, MARKOVA E B, SHARAEVA A A, KRYUCHKOVA T A, ZVEREVA I A, CHISLOVA I V, YAFAROVA L V. Carbon monoxide hydrogenation over Gd (Fe/Mn) O3 perovskite-type catalysts[J]. Petrol Chem,2019,59(12):1307−1313. doi: 10.1134/S0965544119120107
    [27] MATTSSON A, LEJON C, BAKARDJIEVA S, ŠTENGL V, ÖSTERLUND L. Characterisation, phase stability and surface chemical properties of photocatalytic active Zr and Y co-doped anatase TiO2 nanoparticles[J]. J Solid State Chem,2013,199:212−223. doi: 10.1016/j.jssc.2012.12.018
    [28] EZBIRI M, BECATTINI V, HOES M, MICHALSKY R, STEINFELD A. High redox capacity of Al-Doped La1−xSrxMnO3−δ perovskites for splitting CO2 and H2O at Mn-enriched surfaces[J]. ChemSusChem,2017,10(7):1517−1525. doi: 10.1002/cssc.201601869
    [29] GROSVENOR A P, KOBE B A, BIESINGER M C, MCINTYRE N S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds[J]. Surf Interface Anal,2004,36(12):1564−1574. doi: 10.1002/sia.1984
    [30] WU J X, ZHENG Y S, DACQUIN J P, DJELAL N, CORDIER C, DUJARDIN C, GRANGER P. Impact of dual calcium and manganese substitution of La-deficient perovskites on structural and related catalytic properties: Future opportunities in next three-way-catalyst generation[J]. Appl Catal A: Gen,2021,619(11):118−137.
    [31] XI X Y, ZENG F, ZHANG H, WU X F, REN J, BISSWANGER T, STAMPFER C, HOFMANN J P, PALKOVITS R, HEERES H J. CO2 hydrogenation to higher alcohols over K-promoted bimetallic Fe–In catalysts on a Ce-ZrO2 support[J]. ACS Sustainable Chem Eng,2021,9(18):6235−6249. doi: 10.1021/acssuschemeng.0c08760
    [32] SHI J M, CHANG Y, TANG Y S, WANG X B, WANG X F, ZHANG X C, CAO J L. Hydrogenated LaFeO3 with oxygen vacancies for enhanced visible light photocatalytic performance[J]. Ceram Inter,2020,46(4):5315−5322. doi: 10.1016/j.ceramint.2019.10.282
    [33] ZHANG X H, PEI C L, CHANG X, CHEN S, LIU R, ZHAO Z J, MU R T, GONG J L. FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting[J]. J Am Chem Soc,2020,142(26):11540−11549. doi: 10.1021/jacs.0c04643
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1480
  • HTML全文浏览量:  74
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-07-28
  • 录用日期:  2022-07-31
  • 网络出版日期:  2022-10-18
  • 刊出日期:  2023-01-10

目录

    /

    返回文章
    返回