留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The structure-sensitive of Cu catalyst for furfural conversion to furfuryl alcohol: A theoretical study

WANG Gui-ru ZHI Cui-mei YANG Wen

王贵儒, 智翠梅, 杨雯. Cu基催化剂上糠醛转化为糠醇结构敏感性的理论研究[J]. 燃料化学学报(中英文), 2023, 51(2): 263-272. doi: 10.1016/S1872-5813(22)60074-4
引用本文: 王贵儒, 智翠梅, 杨雯. Cu基催化剂上糠醛转化为糠醇结构敏感性的理论研究[J]. 燃料化学学报(中英文), 2023, 51(2): 263-272. doi: 10.1016/S1872-5813(22)60074-4
WANG Gui-ru, ZHI Cui-mei, YANG Wen. The structure-sensitive of Cu catalyst for furfural conversion to furfuryl alcohol: A theoretical study[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 263-272. doi: 10.1016/S1872-5813(22)60074-4
Citation: WANG Gui-ru, ZHI Cui-mei, YANG Wen. The structure-sensitive of Cu catalyst for furfural conversion to furfuryl alcohol: A theoretical study[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 263-272. doi: 10.1016/S1872-5813(22)60074-4

Cu基催化剂上糠醛转化为糠醇结构敏感性的理论研究

doi: 10.1016/S1872-5813(22)60074-4
详细信息
  • 中图分类号: TQ530

The structure-sensitive of Cu catalyst for furfural conversion to furfuryl alcohol: A theoretical study

Funds: The project was supported by Shanxi Province Science Foundation for Youths (20210302124057), Doctoral Scientific Research Foundation of Taiyuan University of Science and Technology (2019060), Scientific and Technological Innovation Project of Colleges and Universities in Shanxi Province (2020L0353), Outstanding Doctoral Award Fund in Shanxi Province (20202017) and National Natural Science fund of China (51871158)
More Information
  • 摘要: 本研究采用密度泛函理论方法以Cu(111)和Cu(211)表面为代表研究了Cu基催化剂上糠醛加氢转化为糠醇反应的结构敏感性。通过研究糠醛转化为糠醇过程中反应物、中间物种和产物的吸附及可能的反应机理,得出,在Cu(111)和Cu(211)表面上,糠醛C=O基团的碳原子首先加氢(F-CHO + H→F-CH2O),然后氧原子加氢(F-CH2O + H→F-CH2OH),且第二步是整个反应的速率控制步骤。计算结果表明,Cu(211)表面对糠醇的生成具有较好的催化活性,这是由于该表面能够促进H2解离和增强糠醛吸附,进而促进将糠醛转化为糠醇。本工作为通过调节金属催化剂的微观结构来控制生物质分子转化的活性和选择性提供了一种可行的方法。
  • FIG. 2102.  FIG. 2102.

    FIG. 2102.  FIG. 2102.

    Figure  1  Possible adsorption sites on Cu(111) and Cu(211) surface from top and side view

    Figure  2  Intermediates involved in furfuryl alcohol formation via furfural hydrogenation on Cu(111) and Cu(211) surface

    Figure  3  Reaction pathway for H2 dissociation and diffusion on Cu(111) surface and Cu(211) surface

    Figure  4  Reaction potential energy profile of furfuryl alcohol formation on Cu(111) surface

    Figure  5  Energy profile of furfural conversion to furfuryl alcohol on Cu(211) surface

    Figure  6  Most favorable pathway for furfuryl alcohol formation on Cu(111) surface and Cu(211) surface

    Figure  7  Differential charge diagram (a) and Bader charge (b) of furfural adsorption on Cu(111) and Cu(211) surface; d-projected density of states (PDOS) of the Cu atoms on Cu(111) (c) and Cu(211) (d) surfaces

    Table  1  Adsorption energies and key geometrical parameters of various intermediates on Cu(111) and Cu(211) surface

    SpeciesCu(111) Cu(211)
    Eadskey parameter /ÅEadskey parameter /Å
    F-CHO−0.70dO7−Cu=2.105 −1.43dO7−Cu=1.997, dC3−Cu=2.245, dC4−Cu=2.261, dC5−Cu=2.209
    F-CH2O−3.39dO7−Cu=2.014, 2.019, 2.079−3.60dO7−Cu=1.881, dC3−Cu=2.300, dC4−Cu=2.220, dC5−Cu=2.366
    F-CHOH−1.81dC6−Cu=2.014−1.97dC2−Cu=2.270, dC3−Cu=2.319, dC5−Cu=2.162, dC6−Cu=2.247
    F-CH2OH−1.17dO7−Cu=2.344−1.50dO7−Cu=2.291, dC4−Cu=2.236
    H2−0.10dH1−Cu=3.158; dH2−Cu=3.147−0.23dH1−Cu=1.786, dH2−Cu=1.790
    H−2.65dH−Cu=1.733, 1.733, 1.736−2.65dH−Cu=1.717, 1.728, 1.786
    下载: 导出CSV

    Table  2  Activation barriers and reaction energies of various elementary reactions involving in furfural alcohol formation on Cu(111) and Cu(211) surface

    Elementary reactionCu(111)Cu(211)
    Ea /eVΔEr /eVEa /eVΔEr /eV
    R1 H2→2H 0.54 −0.64 0.46 −0.50
    R2 H-hcp→H-fcc 0.14 0 0.17 0.04
    R3 F-CHO + H→F-CH2O 0.54 −0.54 0.52 −0.15
    R4 F-CHO + H→F-CHOH 0.81 0.20 1.08 0.49
    R5 F-CHO→F-CH + O 1.77 0.53 1.75 0.98
    R6 F-CH2O + H→F-CH2OH 1.12 0.05 0.78 −0.09
    R7 F-CHOH + H—F-CH2OH 0.35 −0.69 0.48 −0.73
    下载: 导出CSV
  • [1] CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev,2007,107(6):2411−2502. doi: 10.1021/cr050989d
    [2] HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev,2006,106(9):4044−4098. doi: 10.1021/cr068360d
    [3] VLACHOS D G, CHEN J G, GORTE R J, HUBER G W, TSAPATSIS M. Catalysis center for energy innovation for biomass processing: Research strategies and goals[J]. Catal Lett,2010,140(3):77−84.
    [4] SERRANO-RUIZ J C, WEST R M, DUMESIC J A. Catalytic conversion of renewable biomass resources to fuels and chemicals[J]. Annu Rev Chem Biomol,2010,1(1):79−100. doi: 10.1146/annurev-chembioeng-073009-100935
    [5] YAN K, WU G, LAFLEUR T, JARVIS C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals[J]. Renewable Sustainable Energy Rev,2014,38(Supplement C):663−676.
    [6] MANDALIKA A, QIN L, SATO T K, RUNGE T. Integrated biorefinery model based on production of furans using open-ended high yield processes[J]. Green Chem,2014,16(5):2480−2489. doi: 10.1039/C3GC42424C
    [7] CLIMENT M J, CORMA A, IBORRA S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels[J]. Green Chem,2014,16(2):516−547. doi: 10.1039/c3gc41492b
    [8] YU W, XIONG K, JI N, POROSOFF M D, CHEN J G. Theoretical and experimental studies of the adsorption geometry and reaction pathways of furfural over FeNi bimetallic model surfaces and supported catalysts[J]. J Catal,2014,317:253−262. doi: 10.1016/j.jcat.2014.06.025
    [9] ZABANIOTOU A, IOANNIDOU O, SKOULOU V. Rapeseed residues utilization for energy and 2nd generation biofuels[J]. Fuel,2008,87(8):1492−1502.
    [10] SIMS R E H, MABEE W, SADDLER J N, TAYLOR M. An overview of second generation biofuel technologies[J]. Bioresour Technol,2010,101(6):1570−1580. doi: 10.1016/j.biortech.2009.11.046
    [11] PANG S H, MEDLIN J W. Adsorption and reaction of furfural and furfuryl alcohol on Pd(111): Unique reaction pathways for multifunctional reagents[J]. ACS Catal,2011,1(10):1272−1283. doi: 10.1021/cs200226h
    [12] TAYLOR M J, JIANG L, REICHERT J, PAPAGEORGIOU A C, BEAUMOUNT S K, WILSON K, LEE A F, BARTH J V, KYRIAKOU G. Catalytic hydrogenation and hydrodeoxygenation of furfural over Pt (111): A model system for the rational design and operation of practical biomass conversion catalysts[J]. J Phys Chem C,2017,121(15):8490−8497. doi: 10.1021/acs.jpcc.7b01744
    [13] BANERJEE A, MUSHRIF S H. Reaction pathways for the deoxygenation of biomass-pyrolysis-derived bio-oil on Ru: a DFT study using furfural as a model compound[J]. ChemCatChem,2017,9(14):2828−2838.
    [14] RAO R, DANDEKAR A, BAKER R T K, VANNICE M A. Properties of copper chromite catalysts in hydrogenation reactions[J]. J Catal,1997,171(2):406−419. doi: 10.1006/jcat.1997.1832
    [15] NAGARAJA B M, PADMASRI A H, SEETHARAMULU P. HARI P R K, DAVID R B, RAMA R K S. A highly active Cu-MgO-Cr2O3 catalyst for simultaneous synthesis of furfuryl alcohol and cyclohexanone by a novel coupling route—Combination of furfural hydrogenation and cyclohexanol dehydrogenation[J]. J Mol Catal A: Chem,2007,278(1):29−37.
    [16] MENG X Y, YANG Y S, CHEN L F, XU M, ZHANG X, WEI M. A Control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts[J]. ACS Catal,2019,9(5):4226−4235. doi: 10.1021/acscatal.9b00238
    [17] CHEN L F, YE J Y, YANG Y S, YIN P, FENG H S, CHEN C Y, ZHANG X, WEI M, TRUHLAR D. G. Catalytic conversion furfuryl alcohol to tetrahydrofurfuryl alcohol and 2-methylfuran at terrace, step, and corner sites on Ni[J]. ACS Catal,2020,10(13):7240−7249. doi: 10.1021/acscatal.0c01441
    [18] WANG S, VOROTNIKOV V, VLACHOS D G. Coverage-induced conformational effects on activity and selectivity: hydrogenation and decarbonylation of furfural on Pd(111)[J]. ACS Catal,2015,5(1):104−112. doi: 10.1021/cs5015145
    [19] DA SILVA J L F, BARRETEAU C, SCHROEDER K, BLÜGEL S. All-electron first-principles investigations of the energetics of vicinal Cu surfaces[J]. Phys Rev B,2006,73(12):125402. doi: 10.1103/PhysRevB.73.125402
    [20] SKRIVER H L, ROSENGAARD N M. Surface energy and work function of elemental metals[J]. Phys Rev B,1992,46(11):7157−7168. doi: 10.1103/PhysRevB.46.7157
    [21] VITOS L, SKRIVER H L, KOLLÁR J. The formation energy for steps and kinks on cubic transition metal surfaces[J]. Surf Sci,1999,425(2):212−223.
    [22] LI Z, LI N, WANG N, ZHOU B, YIN P, SONG B, YU J, YANG Y. Mechanism investigations on water gas shift reaction over Cu(111), Cu(100), and Cu(211) surfaces[J]. ACS Omega,2022,7(4):3514−3521. doi: 10.1021/acsomega.1c05991
    [23] FENG Y, AN W, WANG Z, WANG Y, MEN Y, DU Y. Electrochemical CO2 reduction reaction on M@Cu(211) bimetallic single-atom surface alloys: mechanism, kinetics, and catalyst screening[J]. ACS Sustainable Chem Eng,2020,8(1):210−222. doi: 10.1021/acssuschemeng.9b05183
    [24] TEZSEVIN I, SENKAN S, ONAL I, DÜZENLI D. DFT study on the hydrogenation of CO2 to methanol on Ho-doped Cu(211) surface[J]. J Phys Chem C,2020,124(41):22426−22434. doi: 10.1021/acs.jpcc.0c04170
    [25] ZHANG R G, WANG G R, WANG B J, LING L X. Insight into the effect of promoter Mn on ethanol formation from syngas on a Mn-promoted MnCu(211) surface: A comparison with a Cu(211) surface[J]. J Phys Chem C,2014,118(10):5243−5254. doi: 10.1021/jp409447u
    [26] ZHANG R G, WANG G R, WANG B J. Insights into the mechanism of ethanol formation from syngas on Cu and an expanded prediction of improved Cu-based catalyst[J]. J Catal,2013,305:238−255. doi: 10.1016/j.jcat.2013.05.028
    [27] KRESSE G, HAFNER J. Ab-Initio molecular-dynamics for open-shell transition-metals[J]. Phys Rev B,1993,48(17):13115−13118. doi: 10.1103/PhysRevB.48.13115
    [28] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865. doi: 10.1103/PhysRevLett.77.3865
    [29] GRIMME S, ANTONY J, EHRLICH S, KRIEG H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J Chem Phys,2010,132(15):154104. doi: 10.1063/1.3382344
    [30] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. J Comput Chem,2011,32(7):1456−1465. doi: 10.1002/jcc.21759
    [31] BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B,1994,50(24):17953. doi: 10.1103/PhysRevB.50.17953
    [32] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B,1999,59(3):1758. doi: 10.1103/PhysRevB.59.1758
    [33] MCQUARRIE D A. Statistical Mechanics[M]. 2000. Sausalito, Calif.: University Science Books, 2004, 12: 641.
    [34] HENKELMAN G. JÓNSSON H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives[J]. J Chem Phys,1999,111(15):7010−7022. doi: 10.1063/1.480097
    [35] OLSEN R, KROES G, HENKELMAN G. ARNALDSSON A, JÓNSSON H. Comparison of methods for finding saddle points without knowledge of the final states[J]. J Chem Phys,2004,121(20):9776−9792. doi: 10.1063/1.1809574
    [36] SHI Y, ZHU Y, YANG Y, LI Y-W, JIAO H. Exploring furfural catalytic conversion on Cu(111) from computation[J]. ACS Catal,2015,5(7):4020−4032. doi: 10.1021/acscatal.5b00303
    [37] LITTLE T S, QIU J, DURIG J R. Asymmetric torsional potential function and conformational analysis of furfural by far infrared and Raman spectroscopy[J]. Spectrochim Acta A,1989,45(8):789−794. doi: 10.1016/0584-8539(89)80215-6
    [38] LIU B, CHENG L, CURTISS L, GREELEY J. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces[J]. Surf Sci,2014,622:51−59. doi: 10.1016/j.susc.2013.12.001
    [39] ALVAREZ-FALCON L, VINES F, NOTARIO-ESTEVEZ A, ILLAS F. On the hydrogen adsorption and dissociation on Cu surfaces and nanorows[J]. Surf Sci,2016,646:221−229. doi: 10.1016/j.susc.2015.08.005
    [40] REN G, WANG G, MEI H, XU Y, HUANG L. A theoretical insight into furfural conversion catalyzed on the Ni(111) surface[J]. Phys Chem Chem Phys,2019,21(42):23685−23696. doi: 10.1039/C9CP03245B
    [41] KYRIAKOU G, BOUCHER M B, JEWELL A D, LEWIS E A, LAWTON T J, BABER A E, TIERNEY H L, FLYTZANI-STEPHANOPOULOS M, SYKES E C H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science,2012,335(6073):1209−1212. doi: 10.1126/science.1215864
    [42] GUNAWAN R, CAHYADI H S, INSYANI R, KWAK S K, KIM J. Density functional theory investigation of the conversion of 5-(hydroxymethyl)furfural into 2, 5-dimethylfuran over the Pd(111), Cu(111), and Cu3Pd(111) surfaces[J]. J Phys Chem C,2021,125(19):10295−10317. doi: 10.1021/acs.jpcc.0c10639
    [43] HAMMER B, NØRSKOV J K. Electronic factors determining the reactivity of metal surfaces[J]. Surf Sci,1995,343(3):211−220. doi: 10.1016/0039-6028(96)80007-0
    [44] HAMMER B, NØRSKOV J K. Why gold is the noblest of all the metals[J]. Nature,1995,376(6537):238−240. doi: 10.1038/376238a0
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  49
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 修回日期:  2022-08-08
  • 录用日期:  2022-08-09
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回