留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

催化油浆预加氢及中间馏分与高沸点馏分共炭化实验研究

王峰 张政 李泽梁 李科旗 刘贺 陈坤 郭爱军

王峰, 张政, 李泽梁, 李科旗, 刘贺, 陈坤, 郭爱军. 催化油浆预加氢及中间馏分与高沸点馏分共炭化实验研究[J]. 燃料化学学报(中英文), 2023, 51(6): 737-747. doi: 10.1016/S1872-5813(22)60076-8
引用本文: 王峰, 张政, 李泽梁, 李科旗, 刘贺, 陈坤, 郭爱军. 催化油浆预加氢及中间馏分与高沸点馏分共炭化实验研究[J]. 燃料化学学报(中英文), 2023, 51(6): 737-747. doi: 10.1016/S1872-5813(22)60076-8
WANG Feng, ZHANG Zheng, LI Ze-liang, LI Ke-qi, LIU He, CHEN Kun, GUO Ai-jun. Experimental study on pre-hydrogenation of catalytic slurry oil and co-carbonization of middle distillate and high boiling point distillate[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 737-747. doi: 10.1016/S1872-5813(22)60076-8
Citation: WANG Feng, ZHANG Zheng, LI Ze-liang, LI Ke-qi, LIU He, CHEN Kun, GUO Ai-jun. Experimental study on pre-hydrogenation of catalytic slurry oil and co-carbonization of middle distillate and high boiling point distillate[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 737-747. doi: 10.1016/S1872-5813(22)60076-8

催化油浆预加氢及中间馏分与高沸点馏分共炭化实验研究

doi: 10.1016/S1872-5813(22)60076-8
基金项目: 国家自然科学基金 (21776313, 21908248, 22278439), 山东省重点研发计划 (2017GGX70108), 中央高校专项研究基金 (20CX02206A), 重质油国家重点实验室项目 (25F21040114) 和研究生创新基金 (22CX04028A) 资助
详细信息
    通讯作者:

    Tel: 0532-86980607, Fax: 0532-86981787, E-mail: ajguo@upc.edu.cn

  • 中图分类号: TE626.8 + 7

Experimental study on pre-hydrogenation of catalytic slurry oil and co-carbonization of middle distillate and high boiling point distillate

Funds: The project was supported by the National Natural Science Foundation of China (21776313, 21908248, 22278439), the Key Technology Research and Development Program of Shandong (2017GGX70108), the Fundamental Research Funds for the Central Universities (20CX02206A), and the Development Fund of State Key Laboratory of Heavy Oil Processing (25F21040114), and Graduate Innovation Project (22CX04028A).
  • 摘要: 采用缓和预加氢对某催化油浆(SO)进行稳定化处理,通过多种分析表征对加氢前后SO的结构组成、热稳定性、蒸馏收率和于蒸馏过程中的生焦行为进行研究,并对加氢后SO(HSO)中间馏分(350−500 ℃)和高沸点馏分(500−550 ℃)的炭化性能以及两者的共炭化性能进行考察。结果表明,HSO的环烷烃和氢化芳烃含量增多,而不稳定组分烯烃含量显著降低,由2.71%降低为0.97%。由此,HSO的热稳定性显著增强,并且其中间馏分和高沸点馏分的蒸馏收率较SO分别提高了25.8%和23.1%。更为重要的是,HSO蒸馏过程中无明显生焦现象。炭化实验结果表明,HSO中间馏分所得焦炭的光学纹理结构最优,为广域流线型,CTE值最低,为2.25 × 10−6−1。HSO高沸点馏分炭化性能相对较差,而与中间馏分共炭化可以显著改善其炭化性能。当高沸点馏分与中间馏分调配质量比例不高于2∶1时,组合馏分所得焦炭为广域流线型结构,CTE值低于2.30 × 10−6−1
  • FIG. 2378.  FIG. 2378.

    FIG. 2378.  FIG. 2378.

    图  1  SO和HSO的(a) 1H NMR谱图及(b)氢分布

    Figure  1  (a) 1H NMR spectra and (b) hydrogen distributions of SO and HSO

    图  2  SO和HSO的红外光谱谱图

    Figure  2  FT-IR spectra of SO and HSO

    图  3  SO和HSO(a)在410 ℃下的生焦趋势和(b)不同蒸馏深度下的生焦率

    Figure  3  (a) Coke formation trend curves of SO and HSO under 410 ℃, and (b) coke yields during vacuum distillation of SO and HSO under 500 and 550 ℃

    图  4  SO和HSO经减压蒸馏后中间馏分和高沸点馏分收率

    Figure  4  Middle distillate (350−500 ℃) yields and high boiling point distillate (500−550 ℃) yields after vacuum distillation of SO and HSO

    图  5  MDO、HDO、H-MDO与H-HDO经炭化所得半焦偏光显微照片

    Figure  5  Polarized-light microscopic images of green cokes derived from carbonization of MDO, HDO, H-MDO, and H-HDO

    图  6  MDO、HDO、H-MDO和H-HDO所制备煅烧焦的SEM照片

    Figure  6  SEM images of calcined cokes prepared from MDO, HDO, H-MDO, and H-HDO

    图  7  MDO、HDO、H-MDO和H-HDO所制备煅烧焦的(a)XRD谱图和(b)微晶结构参数

    Figure  7  (a) XRD spectra, and (b) crystal parameters of calcined cokes prepared from MDO, HDO, H-MDO, and H-HDO

    图  8  MDO、HDO、H-MDO和H-HDO所制备煅烧焦的热膨胀系数

    Figure  8  CTE of calcined cokes prepared from MDO, HDO, H-MDO, and H-HDO

    图  9  H-MDO/H-HDO组合馏分经炭化所得半焦偏光显微照片

    Figure  9  Polarized-light microscopic images of green cokes derived from carbonization of H-MDO/H-HDO combined fractions

    图  10  H-MDO/H-HDO组合馏分所制备煅烧焦的SEM照片

    Figure  10  SEM images of calcined cokes derived from carbonization of H-MDO/H-HDO combined fractions

    图  11  H-MDO/H-HDO组合馏分所制备煅烧焦的(a)XRD谱图和(b)微晶结构参数

    Figure  11  (a) XRD spectra, and (b) crystal parameters of calcined cokes prepared from H-MDO/H-HDO combined fractions

    图  12  H-MDO/H-HDO组合馏分所制备煅烧焦的热膨胀系数

    Figure  12  CTE values of calcined cokes prepared from H-MDO/H-HDO combined fractions

    表  1  SO和HSO的主要性质

    Table  1  Main properties of the SO and HSO

    ItemSOHSO
    Density ρ20 /(g·cm−3)0.97730.9746
    Viscosity η100 /(mm2·s−1)50.1047.72
    Residual carbon w/%10.769.94
    Ash /(μg·g−1)16671598
    C w/%88.0287.91
    H w/%11.2511.32
    S w/%0.410.35
    N w/%0.320.30
    H/C atomic ratio1.531.55
    Saturates w/%34.6435.36
    Aromatics w/%45.2344.44
    Resins w/%19.4919.64
    Asphaltenes w/%0.640.56
    Molecular weight593.4585.7
    下载: 导出CSV

    表  2  SO和HSO的平均结构参数

    Table  2  Average structural parameters of SO and HSO

    Oil samplefafNRARNRT
    SO0.320.142.941.574.51
    HSO0.300.172.731.794.52
    下载: 导出CSV

    表  3  SO和HSO的红外结构参数对比

    Table  3  FT-IR structural parameters of SO and HSO

    Oil samplefaICHSIA
    SO0.350.340.49
    HSO0.320.360.47
    下载: 导出CSV
  • [1] 尹彦国, 王晓丽, 梁金禄. 以催化油浆为炼厂锅炉燃料的应用分析[J]. 化工技术与开发,2018,47(6):55−57. doi: 10.3969/j.issn.1671-9905.2018.06.015

    YIN Yan-guo, WANG Xiao-li, LIANG Jin-lu. Application analysis of catalytic oil slurry as refinery boiler fuel[J]. Technol Dev Chem Ind,2018,47(6):55−57. doi: 10.3969/j.issn.1671-9905.2018.06.015
    [2] 何莹, 刘海丰, 张大奎, 薛占强, 王晓楠, 左宜, 高源. 中低温煤焦油制备优质针状焦的研究[J]. 炭素,2022,(1):22−32.

    HE Ying, LIU Hai-feng, ZHANG Da-kui, XUE Zhan-qiang, WANG Xiao-nan, ZUO Yi, GAO Yuan. Preparation of high quality needle coke from medium and low temperature coal tar[J]. Carbon,2022,(1):22−32.
    [3] 林崧, 陈强, 朱亚东, 盛维武, 朱伟, 李小婷, 魏嘉. 催化裂化油浆固液分离新技术开发[J]. 炼油技术与工程,2021,51(1):6−9. doi: 10.3969/j.issn.1002-106X.2021.01.002

    LIN Song, CHEN Qiang, ZHU Ya-dong, SHENG Wei-wu, ZHU Wei, LI Xiao-ting, WEI Jia. Development of new technology for solid-liquid separation of FCC slurry[J]. Pet Refin Eng,2021,51(1):6−9. doi: 10.3969/j.issn.1002-106X.2021.01.002
    [4] 许志明, 张立, 赵锁奇, 王仁安. 催化裂化油浆的分离与化工利用[J]. 石油炼制与化工,1988,19(9):30−35.

    XU Zhi-ming, ZHANG Li, ZHAO Suo-qi, WANG Ren-an. Separation and chemical utilization of FCC decanted oil[J]. Pet Process Petrochem,1988,19(9):30−35.
    [5] ESER S, WANG G. A laboratory study of a pretreatment approach to accommodate high-sulfur FCC decant oils as feedstocks for commercial needle coke[J]. Energy Fuels,2007,21(6):3573−3582. doi: 10.1021/ef060541v
    [6] 郭爱军, 郑文林, 焦守辉, 陈坤, 刘贺, 王宗贤, 王子豪. 催化裂化油浆中烯烃分布研究[J]. 燃料化学学报,2017,45(2):165−171. doi: 10.3969/j.issn.0253-2409.2017.02.005

    GUO Ai-jun, ZHENG Wen-lin, JIAO Shou-hui, CHEN Kun, LIU He, WANG Zong-xian, WANG Zi-hao. Study on olefin distribution of catalytic cracking slurry[J]. J Fuel Chem Technol,2017,45(2):165−171. doi: 10.3969/j.issn.0253-2409.2017.02.005
    [7] GUO A, WANG F, JIAO S, IBRAHIM UK, LIU H, CHEN K, WANG Z. Mesophase pitch production from FCC slurry oil: Optimizing compositions and properties of the carbonization feedstock by slurry-bed hydrotreating coupled with distillation[J]. Fuel,2020,262:116639. doi: 10.1016/j.fuel.2019.116639
    [8] XING T, ALVAREZ-MAJMUTOV A, CHEN J. Bitumen partial upgrading by mild hydroprocessing in a fixed-bed reactor[J]. Fuel,2019,235:696−702. doi: 10.1016/j.fuel.2018.08.058
    [9] PEPRAH B A, BROWN O, STRYKER J M, MCCAFFREY W C. Sulfided homogeneous iron precatalyst for partial hydrogenation and hydrodesulfurization of polycyclic aromatic model asphaltenes[J]. Energy Fuels,2020,34(12):16532−16541. doi: 10.1021/acs.energyfuels.0c02908
    [10] 焦守辉. 催化油浆加氢预处理及分级炭化研究[D]. 青岛: 中国石油大学(华东), 2018 .

    JIAO Shou-hui. Investigation on hydrogenation pretreatment and stagewise carbonization of FCC slurry[D]. Qingdao: China University of Petroleum (East China), 2018.
    [11] 柴永明, 相春娥, 孔会清, 柳云骐, 刘晨光. 馏分油浆态床加氢处理研究: II FCC柴油加氢工艺条件及动力学研究[J]. 燃料化学学报,2009,37(1):58−64. doi: 10.3969/j.issn.0253-2409.2009.01.011

    CHAI Yong-ming, XIANG Chun-e, KONG Hui-qing, LIU Yun-qi, LIU Chen-guang. A study on process for slurry-bed hydrotreating of distillate oil: II Processing conditions and kinetics analysis of FCC diesel oil[J]. J Fuel Chem Technol,2009,37(1):58−64. doi: 10.3969/j.issn.0253-2409.2009.01.011
    [12] 程俊霞, 朱亚明, 高丽娟, 赵雪飞. 煤系针状焦煅烧过程中焦炭微晶结构的演变规律[J]. 燃料化学学报,2020,48(9):1071−1078. doi: 10.3969/j.issn.0253-2409.2020.09.006

    CHENG Jun-xia, ZHU Ya-ming, GAO Li-juan, ZHAO Xue-fei. Evolution of coke micro crystalline structure during calcination process of coal based needle coke[J]. J Fuel Chem Technol,2020,48(9):1071−1078. doi: 10.3969/j.issn.0253-2409.2020.09.006
    [13] WINSCHEL R A, ROBBINS G A, BURKE F P. Correlation of micro autoclave and 1H nmr measurements of coal liquefaction solvent quality[J]. Fuel,1986,65(4):526−532. doi: 10.1016/0016-2361(86)90044-X
    [14] 王政委, 魏宝勇, 吕剑楠, 王一鸣, 武云飞, 杨赫, 胡浩权. 煤热解与甲烷蒸汽重整耦合过程焦油在碳基镍催化剂上的原位催化提质[J]. 燃料化学学报,2022,50(2):129−142. doi: 10.1016/S1872-5813(21)60169-X

    WANG Zheng-wei, WEI Bao-yong, LÜ Jian-nan, WANG Yi-ming, WU Yun-fei, YANG He, HU Hao-quan. In-situ catalytic upgrading of tar from integrated process of coal pyrolysis with steam reforming of methane over carbon based Ni catalyst[J]. J Fuel Chem Technol,2022,50(2):129−142. doi: 10.1016/S1872-5813(21)60169-X
    [15] LI M, LIU D, LV R, YE J, DU H. Preparation of the mesophase pitch by hydrocracking tail oil from a naphthenic vacuum residue[J]. Energy Fuels,2015,29(7):4193−4200. doi: 10.1021/acs.energyfuels.5b00537
    [16] 刘贺, 陈坤, 王宗贤, 郭爱军. 1H-NMR评价不同重油缓和热转化过程中的相对供氢能力[J]. 燃料化学学报,2013,41(10):1191−1198.

    LIU He, CHEN Kun, WANG Zong-xian, GUO Ai-jun. Evaluation of relative hydrogen-donating abilities of different heavy oils during mild thermal conversion by 1H-NMR[J]. J Fuel Chem Technol,2013,41(10):1191−1198.
    [17] 邢其毅, 裴伟伟, 徐瑞秋, 裴坚. 基础有机化学[M]. (第四版) 上册. 北京: 北京大学出版社, 2016.

    XING Qi-yi, PEI Wei-wei, XU Rui-qiu, PEI jian. Basic Organic Chemistry[M]. (4nd ed) (I). Beijing: Peking University press, 2016.
    [18] LIEDTKE V, HUTTINGER K J. Mesophase pitches as matrix precursor of carbon fiber reinforced carbon: I. Mesophase pitch preparation and characterization[J]. Carbon,1996,34(9):1057−1066. doi: 10.1016/0008-6223(96)00055-3
    [19] JIAO S, LI Z, HU J, BINEY BW, WANG F, LIU H, CHEN K, GUO A, SUN L, WANG Z. Mild hydrogenation pretreatment of FCC slurry oil for high-value-added utilization: Exploitable high-boiling components and carbonization discrepancy[J]. J Anal Appl Pyrolysis,2022,161:105411. doi: 10.1016/j.jaap.2021.105411
    [20] 王宗贤, 何岩, 郭爱军, 张宏玉, 阙国河. 辽河和孤岛渣油供氢与生焦趋势[J]. 燃料化学学报,1999,27(3):251−255.

    WANG Zong-xian, HE yan, GUO Ai-jun, ZHANG Hong-yu, QUE Guo-he. Study on hydrogen-donating ability of vacuum residues and their sub-fractions[J]. J Fuel Chem Technol,1999,27(3):251−255.
    [21] XING T, ALI M, ALEM T, GIELECIAK R, CHEN J. Fouling tendency of bitumen visbreaking products[J]. Fuel,2021,289:119735. doi: 10.1016/j.fuel.2020.119735
    [22] 梁文杰. 重质油化学[M]. 东营: 石油大学出版社, 重质油化学, 2000.

    LIANG Wen-jie. Heavy Oil Chemistry[M]. Dongying: China University of Petroleum Press, 2000.
    [23] AlVAREZ A G, MARTNEZ-ESCANDELL M, MOLINA-SABIO M, RODRIGUEZ-REINOSO F. Pyrolysis of petroleum residues: Analysis of semicokes by X-ray diffraction[J]. Carbon,1999,37(10):1627−1632. doi: 10.1016/S0008-6223(99)00085-8
    [24] 康进才, 吴沣, 胡春玉. 超高功率石墨电极原料针状焦的评价及应用[J]. 河南冶金,2019,27(1):1−3 + 33. doi: 10.3969/j.issn.1006-3129.2019.01.001

    KANG Jin-cai, WU Feng, HU Chun-yu. Evaluation and application of needle coke as raw material of ultra-high power graphite electrode[J]. Henan Metallurgy,2019,27(1):1−3 + 33. doi: 10.3969/j.issn.1006-3129.2019.01.001
    [25] 高生辉, 马明明, 高峰, 田育成, 刘杰, 黄晔, 李冬. 煤基柴油与中低温煤焦油沥青共炭化对制备针状焦的影响[J]. 炭素技术,2022,41(2):53−59. doi: 10.14078/j.cnki.1001-3741.2022.02.009

    GAO Sheng-hui, MA Ming-ming, GAO Feng, TIAN Yu-cheng, LIU Jie, HUANG Ye, LI Dong. Effect of cocarbonization of coal based diesel oil and medium/low temperature coal tar pitch on preparation of needle coke[J]. Carbon Tech,2022,41(2):53−59. doi: 10.14078/j.cnki.1001-3741.2022.02.009
    [26] 程相林, 查庆芳, 钟景涛, 侯宝花, 郭燕生. 烷基在针状焦形成中的作用[J]. 燃料化学学报,2009,37(2):166−169. doi: 10.3969/j.issn.0253-2409.2009.02.008

    CHENG Xiang-lin, ZHA Qing-fang, ZHONG Jing-tao, HOU Bao-hua, GUO Yan-sheng. Influence of alkyl group on the formation of needle coke[J]. J Fuel Chem Technol,2009,37(2):166−169. doi: 10.3969/j.issn.0253-2409.2009.02.008
    [27] LI M, LIU D, LOU B, HOU X, CHEN P. Relationship between structural modification of aromatic-rich fraction from heavy oil and the development of mesophase microstructure in thermal polymerization process[J]. Energy Fuels,2016,30(10):8177−8184. doi: 10.1021/acs.energyfuels.6b01496
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  81
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2022-11-05
  • 录用日期:  2022-11-08
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回