留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuCo双金属催化剂催化糠醛加氢制备1,5-戊二醇的研究

海雪清 谭静静 何静 杨新玲 那逸飞 王永钊 赵永祥

海雪清, 谭静静, 何静, 杨新玲, 那逸飞, 王永钊, 赵永祥. CuCo双金属催化剂催化糠醛加氢制备1,5-戊二醇的研究[J]. 燃料化学学报(中英文), 2023, 51(7): 959-969. doi: 10.1016/S1872-5813(23)60334-2
引用本文: 海雪清, 谭静静, 何静, 杨新玲, 那逸飞, 王永钊, 赵永祥. CuCo双金属催化剂催化糠醛加氢制备1,5-戊二醇的研究[J]. 燃料化学学报(中英文), 2023, 51(7): 959-969. doi: 10.1016/S1872-5813(23)60334-2
HAI Xue-qing, TAN Jing-jing, HE Jing, YANG Xin-ling, NA Yi-fei, WANG Yong-zhao, ZHAO Yong-xiang. Hydrogenation of furfural to 1,5-pentanediol over CuCo bimetallic catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 959-969. doi: 10.1016/S1872-5813(23)60334-2
Citation: HAI Xue-qing, TAN Jing-jing, HE Jing, YANG Xin-ling, NA Yi-fei, WANG Yong-zhao, ZHAO Yong-xiang. Hydrogenation of furfural to 1,5-pentanediol over CuCo bimetallic catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 959-969. doi: 10.1016/S1872-5813(23)60334-2

CuCo双金属催化剂催化糠醛加氢制备1,5-戊二醇的研究

doi: 10.1016/S1872-5813(23)60334-2
基金项目: 国家自然科学基金(22005182, U1710221)和山西省高等学校科技创新项目(2020L0012)资助
详细信息
    通讯作者:

    E-mail: tanjingjing@sxu.edu.cn

    yxzhao@sxu.edu.cn

  • 中图分类号: O643.36

Hydrogenation of furfural to 1,5-pentanediol over CuCo bimetallic catalysts

Funds: The project was supported by the National Youth Natural Science Foundation of China (2005182, U1710221) and Science and technology innovation projects in colleges and universities in Shanxi Province (2020L0012)
  • 摘要: 通过尿素均匀沉淀法合成了一系列具有不同Cu/Co物质的量比的CuxCo3–xAl类水滑石催化剂,并将其用于糠醛(FAL)直接加氢-氢解制备1,5-戊二醇(1,5-PeD)。研究结果表明,Cu/Co物质的量比对催化剂的织构性质及其催化性能具有显著的影响。当Cu/Co物质的量比为1∶29(Cu0.1Co2.9Al)时,催化剂表现出优异的催化性能,在140 ℃,4 MPa H2条件下反应6 h,糠醛的转化率为100%,戊二醇的收率为51.1%,其中,1,5-戊二醇的收率为41.1%。采用程序升温还原(H2-TPR)、程序升温脱附(H2-TPD)、X射线光电子能谱(XPS)和拉曼光谱(Raman)等表征技术证实,Cu0.1Co2.9Al催化剂具有高活性的原因在于其表面具有最高含量的Cu0和CoOx,且两者具有协同催化效应。Cu0用于吸附和活化H2,CoOx具有一定氧空位,可以促进糠醛分子中C=O基的吸附与活化,使其快速加氢生成糠醇,同时氧空位可以锚定中间体糠醇中–OH使其在催化剂表面产生C2端斜式吸附,促使C2=C3加氢,弱化C2–O1键使其断裂,进而提高1,5-戊二醇的选择性。
  • FIG. 2469.  FIG. 2469.

    FIG. 2469.  FIG. 2469.

    图  1  糠醛加氢制备1,5-戊二醇的反应途径示意图

    Figure  1  Reaction pathway for the hydrogenation of furfural to 1,5-pentanediol

    图  2  (a) CuxCo3–xAl-LDH, (b) CuxCo3–xAl-LDO和(c)还原态CuxCo3–xAl-LDO的XRD谱图

    Figure  2  XRD patterns of (a) CuxCo3–xAl-LDH, (b) CuxCo3–xAl-LDO and (c) reduced CuxCo3–xAl-LDO catalysts

    a: Cu3Al; b: Cu2.9Co0.1Al; c: Cu1.5Co1.5Al; d: Cu0.1Co2.9Al; e: Co3Al

    图  3  (a)CuxCo3–xAl-LDH和(b)CuxCo3–xAl-LDO的ATR-IR谱图

    Figure  3  ATR-IR spectra of (a) CuxCo3–xAl-LDH and (b) CuxCo3–xAl-LDO catalysts

    a: Cu3Al; b: Cu2.9Co0.1Al; c: Cu1.5Co1.5Al; d: Cu0.1Co2.9Al; e: Co3Al

    图  4  还原态CuxCo3–xAl-LDO的XPS谱图

    Figure  4  XPS spectra for reduced CuxCo3–xAl-LDO catalysts (a): Cu 2p; (b): Cu LMM; (c): Co 2p;(d): O 1s a: Cu3Al; b: Cu2.9Co0.1Al; c: Cu1.5Co1.5Al; d: Cu0.1Co2.9Al; e: Co3Al

    图  5  CuxCo3–xAl-LDO的H2-TPR谱图

    Figure  5  H2-TPR profiles of the CuxCo3–xAl-LDO catalysts

    a: Cu3Al; b: Cu2.9Co0.1Al; c: Cu1.5Co1.5Al; d: Cu0.1Co2.9Al; e: Co3Al

    图  6  还原态CuxCo3–xAl-LDO的Raman谱图

    Figure  6  Raman spectra of the reduced CuxCo3xAl-LDO catalysts

    a: Cu3Al; b: Cu2.9Co0.1Al; c: Cu1.5Co1.5Al; d: Cu0.1Co2.9Al; e: Co3Al

    图  7  还原态CuxCo3–xAl-LDO的H2-TPD谱图

    Figure  7  H2-TPD profiles of the reduced CuxCo3–xAl-LDO catalysts

    a: Cu3Al; b: Cu2.9Co0.1Al; c: Cu1.5Co1.5Al; d: Cu0.1Co2.9Al; e: Co3Al

    图  8  Cu0、CoOx含量和1,5-PeD收率的关系

    Figure  8  Relationship of Cu0, CoOx distribution and the yield of 1,5-PeD

    图  9  反应时间对Cu0.1Co2.9Al催化剂催化性能的影响

    Figure  9  Influence of reaction time on the catalytic performance of Cu0.1Co2.9Al catalyst

    Reaction conditions: FAL 0.5 g; catalyst: 0.1 g; H2: 4 MPa; solvent: ethanol 40 g; reaction temperature 140 ℃

    表  1  CuxCo3–xAl-LDO催化剂的织构参数

    Table  1  Textural properties of catalysts

    Catalystn(H)/
    (mmol·g−1)
    SBET/
    (m2·g−1)
    vp/
    (cm3·g−1)
    dp/
    nm
    Co3Al0.322030.294.77
    Cu0.1Co2.9Al0.481340.205.45
    Cu1.5Co1.5Al0.41830.2711.41
    Cu2.9Co0.1Al0.36730.3012.75
    Cu3Al0.31900.3011.64
    n(H) was calculated by H2-TPD, BET surface area, pore volume and pore size were calculated by N2-physisorption
    下载: 导出CSV

    表  2  还原态CuxCo3–xAl-LDO催化剂中Cu、Co、O物种在XPS积分面积上的分布

    Table  2  Distribution of Cu, Co and O species on XPS integral area in reduced CuxCo3–xAl-LDO catalysts

    CatalystCu /%Co /% O /%
    Cu0Cu+ Cu0/(Cu0 + Cu+ )Co2+ (CoOx)Co3+ Co2+ (CoOx)/( Co2+ + Co3+ )OI OII OIII
    Co3Al 38.062.038.0 41.649.29.2
    Cu0.1Co2.9Al49.150.949.142.857.242.831.954.014.1
    Cu1.5Co1.5Al28.971.128.940.759.340.737.850.212.0
    Cu2.9Co0.1Al29.570.529.536.362.736.329.943.526.6
    Cu3Al32.767.332.722.234.043.8
    下载: 导出CSV

    表  3  Cu/Co物质的量比对CuxCo3-xAl催化剂催化糠醛加氢性能影响

    Table  3  Effect of Cu/Co molar ratio of CuxCo3-xAl catalysts on the hydrogenation of FAL

    EntryCatalystConv. /%Selectivity /%Yield of
    1,5-PeD/%
    2-MF2-PeTn-PeT1-BOHothersTHFAFFA1,2-PeD1,5-PeD
    1Co3Al87.84.6000024.063.807.66.7
    2Cu0.1Co2.9Al96.32.62.33.42.63.832.218.37.327.526.5
    3Cu1.5Co1.5Al95.52.21.71.51.22.821.647.05.316.715.9
    4Cu2.9Co0.1Al87.500002.4097.6000
    5Cu3Al83.1000000100000
    6Cu0.1Co2.9Al0000001000000
    reaction conditions: FAL 0.5 g; catalyst: 0.1 g; H2: 4 MPa; solvent: ethanol 40 g; reaction temperature 140 ℃; reaction time 2 h; 2-MF:2-methylfuran; 2-PeT: 2-Pentanol; n-PeT:n-Pentanol; 1-BOH:n-butanol; THFA:tetrahydrofurfuryl alcohol; FFA:furfuryl alcohol; 1,2-PeD:1,2-Pentanediol; 1,5-PeD:1,5-Pentanediol, others: unknown product; the substrate was THFA; the carbon balance >97%
    下载: 导出CSV
  • [1] MIKA L T, CSÉFALVAY E, NÉMETH Á. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chem Rev,2018,118(2):505−613. doi: 10.1021/acs.chemrev.7b00395
    [2] TESTA M L, TUMMINO M L. Lignocellulose biomass as a multifunctional tool for sustainable catalysis and chemicals: An overview[J]. Catalysts,2021,11(1):125. doi: 10.3390/catal11010125
    [3] PANWAR N L, KAUSHIK S C, KOTHARI S. Role of renewable energy sources in environmental protection: A review[J]. Renewable Sustainable Energy Rev,2011,15(3):1513−1524. doi: 10.1016/j.rser.2010.11.037
    [4] IRIONDO A, AGIRRE I, VIAR N, REQUIES J. Value-added biochemicals commodities from catalytic conversion of biomass derived furan-compounds[J]. Catalysts,2020,10(8):895. doi: 10.3390/catal10080895
    [5] GINEY T, KANTAR K. Biomass energy consumption and sustainable development[J]. Int J Sust Dev World,2020,27(8):762−767. doi: 10.1080/13504509.2020.1753124
    [6] BENDER T A, DABROWSKI J A, GAGNÉ M R. Homogeneous catalysis for the production of low-volume, high-value chemicals from biomass[J]. Nat Rev Chem,2018,2(5):35−46. doi: 10.1038/s41570-018-0005-y
    [7] ZHOU Z, LIU D, ZHAO X. Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose[J]. Renewable Sustainable Energy Rev,2021,146:111169. doi: 10.1016/j.rser.2021.111169
    [8] KHENTHONG P, YIMSUKANAN C, NARKKUN T, SRIFA A, WITOON T, PONGCHAIPHOL S, FAUNGNAWAKIJ K. Advances in catalytic production of value-added biochemicals and biofuels via furfural platform derived lignocellulosic biomass[J]. Biomass Bioenergy,2021,148:106033. doi: 10.1016/j.biombioe.2021.106033
    [9] CAI C M, ZHANG T, KUMAR R, WYMAN C E. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass[J]. J Chem Technol Biotechnol,2014,89(1):2−10. doi: 10.1002/jctb.4168
    [10] LI X, JIA P, WANG T. Furfural: A promising platform compound for sustainable production of C4 and C5 chemicals[J]. ACS Catal,2016,6(11):7621−7640. doi: 10.1021/acscatal.6b01838
    [11] FAERGEMANN J, WAHLSTRAND B, HEDNER T, JOHNSSON J, NEUBERT R H. Pentane-1, 5-diol as a percutaneous absorption enhancer[J]. Arch Dermatol Res,2005,297(6):261−265. doi: 10.1007/s00403-005-0610-8
    [12] HUANG K, BRENTZEL Z J, BARNETT K J, DUMESIC J A, HUBER G W, MARAVELIAS C T. Conversion of furfural to 1, 5-pentanediol: Process synthesis and analysis[J]. ACS Sustainable Chem Eng,2017,5(6):4699−4706. doi: 10.1021/acssuschemeng.7b00059
    [13] XU W, WANG H, LIU X, REN J, WANG Y, LU G. Direct catalytic conversion of furfural to 1, 5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst[J]. Chem Commun,2011,47(13):3924−3926. doi: 10.1039/c0cc05775d
    [14] FU X M, REN X Q, SHEN J, JIANG Y, WANG Y, OROOJI Y, XU W, LIANG J. Synergistic catalytic hydrogenation of furfural to 1, 2-pentanediol and 1, 5-pentanediol with LDO derived from CuMgAl hydrotalcite[J]. Mol Catal,2021,499:111298. doi: 10.1016/j.mcat.2020.111298
    [15] SHAO Y, WANG J, SUN K, GAO G, LI C, ZHANG L, XU L, HU G, HU X. Selective hydrogenation of furfural and its derivative over bimetallic NiFe-based catalysts: Understanding the synergy between Ni sites and Ni-Fe alloy[J]. Renew Energ,2021,170:1114−1128. doi: 10.1016/j.renene.2021.02.056
    [16] 卫彩云, 谭静静, 夏晓丽, 赵永祥. 焙烧温度对 CuMgAl 催化剂催化糠醇加氢制戊二醇的影响[J]. 化工学报,2019,70(4):1409−1419.

    WEI Cai-yun, TAN Jing-jing, XIA Xiao-li, ZHAO Yong-xiang. Influence of calcination temperature on CuMgAl catalytic performance for hydrogenation of furfuralcohol to pentanediol[J]. CHESC J,2019,70(4):1409−1419.
    [17] MA C Y, MU Z, Li J J, JIN Y G, CHENG J, LU G Q, HAO Z P, QIAO S Z. Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene[J]. J Am Chem Soc,2010,132(8):2608−2613. doi: 10.1021/ja906274t
    [18] ZHANG J, GAO Z, WANG S, WANG G, GAO X, ZHANG B, XING S, ZHAO S, QIN Y. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction[J]. Nat Commun,2019,10(1):1−8. doi: 10.1038/s41467-018-07882-8
    [19] GAO X, ZHU S, DONG M, WANG J, FAN W. Ru/CeO2 catalyst with optimized CeO2 morphology and surface facet for efficient hydrogenation of ethyl levulinate to γ-valerolactone[J]. J Catal,2020,389:60−70. doi: 10.1016/j.jcat.2020.05.012
    [20] SULMONETTI T P, HU B, LEE S, AGRAWAL P K, JONES C W. Reduced Cu-Co-Al mixed metal oxides for the ring-opening of furfuryl alcohol to produce renewable diols[J]. ACS Sustainable Chem Eng,2017,5(10):8959−8969. doi: 10.1021/acssuschemeng.7b01769
    [21] LI S, WANG H, LI W, WU X, TANG W, CHEN Y. Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor[J]. Appl Catal B: Environ,2015,166:260−269.
    [22] KANNAN S, RIVES V, KNöZINGER H J. High-temperature transformations of Cu-rich hydrotalcites[J]. Solid State Chem,2004,177(1):319−331. doi: 10.1016/j.jssc.2003.08.023
    [23] WU J, GAO G, SUN P, LONG X, LI F. Synergetic catalysis of bimetallic CuCo nanocomposites for selective hydrogenation of bioderived esters[J]. ACS Catal,2017,7(11):7890−7901. doi: 10.1021/acscatal.7b02837
    [24] GöBEL C, SCHMIDT S, FROESE C, FU Q, CHEN Y T, PAN Q, MIHLER M. Structural evolution of bimetallic Co-Cu catalysts in CO hydrogenation to higher alcohols at high pressure[J]. J Catal,2020,383:33−41. doi: 10.1016/j.jcat.2020.01.004
    [25] BENHITI R, AIT ICHOU A, ZAGHLOUL A, AZIAM R, CARJA G, ZERBET M, SUNAN F, CHIBAN M. Synthesis, characterization, and comparative study of MgAl-LDHs prepared by standard coprecipitation and urea hydrolysis methods for phosphate removal[J]. Environ Sci Pollut R,2020,27(36):45767−45774. doi: 10.1007/s11356-020-10444-5
    [26] TITULAER M K, JANSEN J B H, GEUS J W. The quantity of reduced nickel in synthetic takovite: Effects of preparation conditions and calcination temperature[J]. Clays clay miner,1994,42(3):249−258. doi: 10.1346/CCMN.1994.0420303
    [27] JITIANU M, JITIANU A, ZAHARESCU M, CRISAN D, MARCHIDAN R. IR structural evidence of hydrotalcites derived oxidic forms[J]. Vib Spectrosc,2000,22(1/2):75−86. doi: 10.1016/S0924-2031(99)00067-3
    [28] RIVES V, DUBEY A, KANNAN S. Synthesis, characterization and catalytic hydroxylation of phenol over CuCoAl ternary hydrotalcites[J]. Phys Chem Chem Phys,2001,3(21):4826−4836. doi: 10.1039/b103656b
    [29] YANG X, CHEN H, MENG Q, ZHENG H, ZHU Y, LI Y W. Insights into influence of nanoparticle size and metal-support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation[J]. Catal Sci Technol,2017,7(23):5625−5634. doi: 10.1039/C7CY01284E
    [30] THAO N T. Catalytic oxidation of styrene over Cu-doped hydrotalcites[J]. Chem Eng J,2015,279:840−850. doi: 10.1016/j.cej.2015.05.090
    [31] CHEN L F, GUO P J, QIAO M H, YAN S R, LI H X, SHEN W, XU H L, FAN K N. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal,2008,257(1):172−180. doi: 10.1016/j.jcat.2008.04.021
    [32] WANG J, LI K, ZHANG L, GE B, LIU Y, YANG T, LIU D. Temperature-depended Cu0.92Co2.08O4 modified activated carbon air cathode improves power output in microbial fuel cell[J]. Int J Hydrogen Energy,2017,42(5):3316−3324. doi: 10.1016/j.ijhydene.2016.09.104
    [33] DOHADE M G, DHEPE P L. Efficient hydrogenation of concentrated aqueous furfural solutions into furfuryl alcohol under ambient conditions in presence of PtCo bimetallic catalyst[J]. Green Chem,2017,19(4):1144−1154. doi: 10.1039/C6GC03143A
    [34] DAI Q, ZHANG Z, YAN J, WU J, JOHNSON G, SUN W, WANG X, ZHANG S, ZHAN W. Phosphate-functionalized CeO2 nanosheets for efficient catalytic oxidation of dichloromethane[J]. Environ Sci Technol,2018,52(22):13430−13437. doi: 10.1021/acs.est.8b05002
    [35] HU Z, WANG Z, GUO Y, WANG L, GUO Y, ZHANG J, ZHAN W. Total oxidation of propane over a Ru/CeO2 catalyst at low temperature[J]. Environ Sci Technol,2018,52(16):9531−9541. doi: 10.1021/acs.est.8b03448
    [36] SUN K, GAO X, BAI Y, TAN M, YANG G, TAN Y. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catal Sci Technol,2018,8(15):3936−3947. doi: 10.1039/C8CY01074A
    [37] CARRILLO A M, CARRIAZO J G. Cu and Co oxides supported on halloysite for the total oxidation of toluene[J]. Appl Catal B: Environ,2015,164:443−452. doi: 10.1016/j.apcatb.2014.09.027
    [38] VELU S, SUZUKI K, HASHIMOTO S, SATOH N, OHASHI F, TOMURA S. The effect of cobalt on the structural properties and reducibility of CuCoZnAl layered double hydroxides and their thermally derived mixed oxides[J]. J Mater Chem,2001,11(8):2049−2060. doi: 10.1039/b101599k
    [39] SUN L, DENG Q, LI Y, MI H, WANG S, DENG L, REN X, ZHANG P. CoO-Co3O4 heterostructure nanoribbon/RGO sandwich-like composites as anode materials for high performance lithium-ion batteries[J]. Electrochim Acta,2017,241:252−260. doi: 10.1016/j.electacta.2017.04.148
    [40] SAVEREIDE L, NAUERT S L, ROBERTS C A, NOTESTEIN J M. The effect of support morphology on CoOx/CeO2 catalysts for the reduction of NO by CO[J]. J Catal,2018,366:150−158. doi: 10.1016/j.jcat.2018.08.005
    [41] SUN X, YANG X, XIANG H, MI H, ZHANG P, REN X, LI Y, LI X. Nitrogen-doped CoOx/carbon nanotubes derived by plasma-enhanced atomic layer deposition: Efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Electrochim Acta,2019,296:964−971. doi: 10.1016/j.electacta.2018.11.084
    [42] HADJIEV V G, ILIEV M N, VERGILOV I V. The Raman spectra of Co3O4[J]. Phys Solid State,1988,21(7):L199. doi: 10.1088/0022-3719/21/7/007
    [43] WANG Y, ARANDIYAN H, CHEN X, ZHAO T, BO X, SU Z, ZHAO C. Microwave-induced plasma synthesis of defect-rich, highly ordered porous phosphorus-doped cobalt oxides for overall water electrolysis[J]. J Phys Chem C,2020,124(18):9971−9978. doi: 10.1021/acs.jpcc.0c01135
    [44] MUñOZ V, ZOTIN F M Z, PALACIO L A. Copper–aluminum hydrotalcite type precursors for NOx abatement[J]. Catal Today,2015,250:173−179. doi: 10.1016/j.cattod.2014.06.004
    [45] DASIREDDY V D B C, NEJA S Š, BLAŽ L. Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol[J]. J CO2 Util,2018,28:189−199. doi: 10.1016/j.jcou.2018.09.002
    [46] PRINS R. Hydrogen spillover. Facts and fiction[J]. Chem Rev,2012,112(5):2714−2738. doi: 10.1021/cr200346z
    [47] 王峰云, 黄家生, 徐奕德, 戴丽珍, 陆大勋, 彭少逸. 不同方法制备的 Cu-Co 低碳醇含成催化剂的比较研究 Ⅱ. H2-TPD, CO-TPD 及 CO/H2 TPSR 的研究[J]. 催化学报,1994,15(6):426−431.

    WANG Feng-yun, HUANG Jia-sheng, XUN Yi-de, DAI Li-zhen, LUN Da-xun, PENG Shao-yi. Comparative study of Cu-Co low carbon alcohol as catalyst prepared by different methods II. Research on H2-TPD, CO-TPD and CO/H2 TPSR[J]. Chin J Catal,1994,15(6):426−431.
    [48] WANG Y, SHEN Y, ZHAO Y, LV J, WANG S, MA X. Insight into the balancing effect of active Cu species for hydrogenation of carbon–oxygen bonds[J]. ACS Catal,2015,5(10):6200−6208. doi: 10.1021/acscatal.5b01678
    [49] TAN J, SU Y, HAI X, HUANG L, CUI J, ZHU Y, WANG Y, ZHAO Y. Conversion of furfuryl alcohol to 1, 5-pentanediol over CuCoAl nanocatalyst: The synergetic catalysis between Cu, CoOx and the basicity of metal oxides[J]. Mol Catal,2022,526:112391. doi: 10.1016/j.mcat.2022.112391
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  855
  • HTML全文浏览量:  121
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2022-12-11
  • 录用日期:  2022-12-26
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回