留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于激光诱导荧光光谱技术的生物质热反应过程研究进展

赵峥 苏胜 宋亚伟 刘舆帅 陈逸峰 贾萌川 许凯 汪一 胡松 向军

赵峥, 苏胜, 宋亚伟, 刘舆帅, 陈逸峰, 贾萌川, 许凯, 汪一, 胡松, 向军. 基于激光诱导荧光光谱技术的生物质热反应过程研究进展[J]. 燃料化学学报(中英文), 2023, 51(7): 873-881. doi: 10.1016/S1872-5813(23)60338-X
引用本文: 赵峥, 苏胜, 宋亚伟, 刘舆帅, 陈逸峰, 贾萌川, 许凯, 汪一, 胡松, 向军. 基于激光诱导荧光光谱技术的生物质热反应过程研究进展[J]. 燃料化学学报(中英文), 2023, 51(7): 873-881. doi: 10.1016/S1872-5813(23)60338-X
ZHAO Zheng, SU Sheng, SONG Ya-wei, LIU Yu-shuai, CHEN Yi-feng, JIA Meng-chuan, XU Kai, WANG Yi, HU Song, XIANG Jun. Research progress in thermal reaction processes of biomass with laser-induced fluorescence spectroscopy[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 873-881. doi: 10.1016/S1872-5813(23)60338-X
Citation: ZHAO Zheng, SU Sheng, SONG Ya-wei, LIU Yu-shuai, CHEN Yi-feng, JIA Meng-chuan, XU Kai, WANG Yi, HU Song, XIANG Jun. Research progress in thermal reaction processes of biomass with laser-induced fluorescence spectroscopy[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 873-881. doi: 10.1016/S1872-5813(23)60338-X

基于激光诱导荧光光谱技术的生物质热反应过程研究进展

doi: 10.1016/S1872-5813(23)60338-X
基金项目: 国家重点研发计划项目(2022YFB4202003)资助
详细信息
    作者简介:

    赵峥(1998-),男,河北省人(籍贯),硕士研究生,研究方向:激光诊断燃烧。E-mail: 1123630448@qq.com

    通讯作者:

    E-mail: susheng@mail.hust.edu.cn

  • 中图分类号: TK6

Research progress in thermal reaction processes of biomass with laser-induced fluorescence spectroscopy

Funds: The project was supported by the National Key Research and Development Plan Subject (2022YFB4202003)
  • 摘要: 深入了解生物质的热解、燃烧特性以及碱金属的生成特性是生物质清洁高效利用的理论基础。传统的测量手段由于测量精度低以及时间滞后等问题,对于生物质热反应过程认识存在不足。激光诱导荧光(LIF)技术具有非接触、实时在线、高空间分辨率、连续性等优点,其用于生物质热反应过程的研究报道越来越多。本研究主要综述了近年来LIF技术在生物质热解过程、燃烧过程及燃烧过程中碱金属释放特性的应用进展,分析了不同反应条件下生物质热解过程中挥发分的生成演化行为及其形成机理,阐述了生物质燃烧过程中火焰结构信息及碱金属的释放迁移转化特性,提出了当前研究存在的一定不足及未来研究方向。
  • FIG. 2461.  FIG. 2461.

    FIG. 2461.  FIG. 2461.

    图  1  三能级跃迁图[17]

    Figure  1  Three-level transition diagram[17] (with permission from doctoral thesis)

    图  2  LIF技术检测生物质热解过程主要热解产物荧光光谱谱图[18]

    Figure  2  Fluorescence spectra of aromatic ring substances detected by LIF technology during biomass pyrolysis [18] (with permission from doctoral thesis)

    图  3  不同温度条件下PAHs图像[27]

    Figure  3  PAHs images under different temperature conditions [27] (with permission from creative commons)

    图  4  纤维素、木质素及木材热解机理示意图[30]

    Figure  4  Pyrolysis mechanism of cellulose, lignin and wood [30] (with permission from Elsevier)

    图  5  颗粒群射流火焰的OH瞬态分布[37]

    Figure  5  OH transient distribution of jet flame from particle swarm [37] (with permission from Journal of Experiments in Fluid Mechanics)

    图  6  不同氧气浓度下木屑颗粒OH-PLIF图像

    Figure  6  OH-PLIF images of wood particles under different oxygen concentrations

    图  7  不同氧气浓度下OH荧光信号强度随时间的变化

    Figure  7  Image of OH fluorescence signal intensity with time under different oxygen concentrations (tign stands for ignition delay time)

    图  8  玉米秸秆燃烧过程钾原子二维分布[44]

    Figure  8  Two-dimensional distribution of potassium atoms during corn stover combustion [44] (with permission from Elsevier)

    图  9  煤及生物质燃烧过程中碱金属释放及转化[45]

    Figure  9  Release and transformation of alkali metals during coal and biomass combustion (M represents K or Na)[45]

  • [1] ALLEN M R, FRAME D J, HUNTINGFORD C, JONES C D, LOWE J A, MEINSHAUSEN M, MEINSHAUSEN N. Warming caused by cumulative carbon emissions towards the trillionth tonne[J]. Nature,2009,458(7242):1163−1166. doi: 10.1038/nature08019
    [2] 江龙. 生物质热解气化过程中内在碱金属, 碱土金属的迁移及催化特性研究[D]. 武汉: 华中科技大学, 2013.

    JIANG Long. Study on migration and Catalytic properties of alkali metals and alkaline Earth Metals during biomass pyrolysis and gasification [D]. Wuhan: Huazhong University of Science and Technology, 2013.
    [3] 李承宇, 张军, 袁浩然, 王树荣, 陈勇. 纤维素热解转化研究进展[J]. 燃料化学学报,2021,49(12):1733−1751.

    LI Cheng-yu, ZHANG Jun, YUAN Hao-yan, WANG Shu-rong, CHEN Yong. Advances in pyrolysis and conversion of cellulose[J]. J Fuel Chem Technol,2021,49(12):1733−1751.
    [4] 胡松, 付鹏, 向军, 孙路石, 丘继华, 张军营. 生物质热反应机理特性研究[J]. 太阳能学报,2009,30(4):509−514.

    HU Song, FU Peng, XIANG Jun, SUN Lu-shi, QIU Ji-hua, ZHANG Jun-ying. Study on the thermal reaction mechanism of biomass[J]. Acta Energ Sin,2009,30(4):509−514.
    [5] 吴逸民, 赵增立, 吴文强, 李海滨. 基于裂解气质联用分析的生物质逐级热解研究[J]. 燃料化学学报,2010,38(2):168−173.

    WU Yi-min, ZHAO Zeng-li, WU Wen-qiang, LI Hai-bin. Pyrolysis of biomass based on pyrolysis mass spectrometry[J]. J Fuel Chem Technol,2010,38(2):168−173.
    [6] 陈汉平, 李斌, 杨海平, 王贤华, 张世红. 生物质燃烧技术现状与展望[J]. 工业锅炉,2009,(5):1−7.

    CHEN Han-ping, LI Bin, YANG Hai-ping, WANG Xian-hua, ZHANG Shi-hong. Status and prospect of biomass combustion technology[J]. Industrial Boiler,2009,(5):1−7.
    [7] 戴贡鑫. 生物质热解机理及选择性调控研究[D]. 浙江: 浙江大学, 2020.

    DAI Gong-xin. Study on mechanism and selective regulation of biomass pyrolysis[D]. Zhejiang: Zhejiang University, 2020.
    [8] 杨光. 生物质燃烧过程中碱金属迁移研究[D]. 广东: 华南理工大学, 2012.

    YANG Guang. Study on alkali metal migration during biomass combustion [D]. Guangdong: South China University of Technology, 2012.
    [9] 周骏, 刘倩, 钟文琪, 余作伟. 生物质混煤燃烧过程中钾的迁移转化规律[J]. 燃料化学学报,2020,48(8):929−936.

    ZHOU Jun, LIU Qian, ZHONG Wen-qi, YU Zuo-wei. Migration and transformation of potassium during biomass mixed coal combustion[J]. J Fuel Chem Technol,2020,48(8):929−936.
    [10] 郑树, 李心语, 韩磊, 陆强. 基于光谱处理和热电偶测量的生物质火焰发射率实验研究[J]. 中南大学学报(自然科学版),2021,52(4):1268−1275.

    ZHENG Shu, LI Xin-yu, HAN Lei, LU Qiang. Experimental study of biomass flame emissivity based on spectrum processing and thermocouple measurement[J]. J Cent South Univ (Nat Sci Ed),2021,52(4):1268−1275.
    [11] 马镱文. 煤中非金属元素激光探针检测技术研究[D]. 武汉: 华中科技大学, 2020.

    MA Yi-wen. Study on the detection of nonmetallic elements in coal by laser probe[D]. Wuhan: Huazhong University of Science and Technology, 2020.
    [12] 周剑平. 多维气相色谱法测定生物质燃气组分含量[J]. 安庆师范大学学报(自然科学版),2021,27(3):72−77.

    ZHOU Jian-ping. Determination of biomass gas Components by Multi-dimensional gas chromatography[J]. J Anqing Normal Univ (Nat Sci Ed),2021,27(3):72−77.
    [13] HAJALIGOL M, WAYMACK B, KELLOGG D. Low temperature formation of aromatic hydrocarbon from pyrolysis of cellulosic materials[J]. Fuel,2001,80(12):1799−1807. doi: 10.1016/S0016-2361(01)00063-1
    [14] LI S, LYONS-HART J, BANYASZ J L, SHAFER K H. Real-time evolved gas analysis by FTIR method: An experimental study of cellulose pyrolysis[J]. Fuel,2001,80(12):1809−1817. doi: 10.1016/S0016-2361(01)00064-3
    [15] 骆培成, 赵素青, 项国兆, 焦真, 周建成. 激光诱导荧光技术及其在液体混合与混合反应流中的应用研究进展[J]. 化工进展,2012,31(4):742−748.

    LUO Pei-cheng, ZHAO Su-qing, XIANG Guo-zhao, JIAO Zhen, ZHOU Jian-cheng. Research progress of laser induced fluorescence technology and its application in liquid mixing and mixing reaction flow[J]. Prog Chem,2012,31(4):742−748.
    [16] KYCHAKOFF G, HOWE R D, HANSON R K, MCDANIEL J C. Quantitative visualization of combustion species in a plane[J]. Appl Opt,1982,21(18):3225−3227. doi: 10.1364/AO.21.003225
    [17] LI T. Experimental investigations of solid fuel combustion with multi-dimensional and multi-parameter laser diagnostics[D]. Darmstadt: Technische Universität Darmstadt, 2021.
    [18] DIEGUEZ-ALONSO A, ANDRES ANCA-COUCE N Z. On-line tar characterization from pyrolysis of wood particles in a technical-scale fixed-bed reactor by applying Laser-Induced Fluorescence (LIF)[J]. J Anal Appl Pyrolysis,2013,102:33−46.
    [19] SINGH P, SUNG C J. PAH formation in counterflow non-premixed flames of butane and butanol isomers[J]. Combust Flame,2016,170:91−110. doi: 10.1016/j.combustflame.2016.05.009
    [20] SINGH P K. Soot and PAH formation in counterflow non-premixed flames: Atmospheric butane and butanol isomers, and elevated-pressure ethylene[D]. Connecticut: University of Connecticut, 2016.
    [21] KAN T, STREZOV V, EVANS T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[J]. Renewable Sustainable Energy Rev,2016,57:1126−1140.
    [22] 刘壮, 田宜水, 马大朝, 胡二峰, 邵思, 李沫杉, 戴重阳. 生物质热解的典型影响因素及技术研究进展[J]. 可再生能源,2021,39(10):1279−1286.

    LIU Zhuang, TIAN Yi-shui, MA Da-zhao, HU Er-feng, SHAO Si, LI Mo-shan, DAI Chong-yang. Research progress on typical influencing factors and technologies of biomass pyrolysis[J]. Renewable Energy,2021,39(10):1279−1286.
    [23] DIEGUEZ-ALONSO A. Fixed-bed biomass pyrolysis: mechanisms and biochar production [D]. Berlin: Technische Universität Berlin, 2015.
    [24] PRINS M J, LI Z S, BASTIAANS R M, VAN OIJEN J A, Alden M, De GOEY L P H. Biomass pyrolysis in a heated-grid reactor: Visualization of carbon monoxide and formaldehyde using Laser-Induced Fluorescence[J]. J Anal Appl Pyrolysis,2011,92(2):280−286. doi: 10.1016/j.jaap.2011.06.008
    [25] BRACKMANN C, ALDÉN M, BENGTSSON P E, KENT O, JAN D. Optical and mass spectrometric study of the pyrolysis gas of wood particles[J]. Appl Spectrosc,2003,57(2):216−222.
    [26] OSSLER F, METZ T, ALDEN M. Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. II. Flame-seeding measurements[J]. Appl Phys B,2001,72(4):479−489.
    [27] MOSONIK C M, VOLPE R, EZENWAJIAKU C, TALIBI M, BALACHANDRAN R. In situ observation of the evolution of polyaromatic tar precursors in packed-bed biomass pyrolysis[J]. React Chem Eng,2021,6(9):1538−1547.
    [28] ANCA-COUCE Z. Slow pyrolysis of wood particles: Characterization of volatiles by Laser-Induced Fluorescence[J]. Proc Combust Inst,2013,34:2355−2362.
    [29] LANG N, RUPP C, ALMUINA-VILLAR H, DIEGUEZ-ALONSO A, BEHRENDT F, ROEPCKE J. Pyrolysis behavior of thermally thick wood particles: Time-resolved characterization with laser based in-situ diagnostics[J]. Fuel,2017,210:371−379.
    [30] DIEGUEZ-ALONSO A, ANCA-COUCE A, ZOBEL N, BEHRENDT F. Understanding the primary and secondary slow pyrolysis mechanisms of holocellulose, lignin and wood with laser-induced fluorescence[J]. Fuel,2015,153:102−109.
    [31] KHATAMI R, STIVERS C, JOSHI K, LEVENDIS YA, SAROFIM AF. Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres[J]. Combust Flame,2012,159(3):1253−1271. doi: 10.1016/j.combustflame.2011.09.009
    [32] RIAZA J, GIBBINS J, CHALMERS H. Ignition and combustion of single particles of coal and biomass[J]. Fuel,2017,202:650−655.
    [33] MAGALHAES D, KAZANC F, FERREIRA A, MIRIAM R, MARIO C. Ignition behavior of Turkish biomass and lignite fuels at low and high heating rates[J]. Fuel,2017,207:154−164.
    [34] WENG W, MÁRIO C, LI Z, MARCUS A. Temporally and spectrally re-solved images of single burning pulverized wheat straw particles[J]. Fuel,2018,224:434−441. doi: 10.1016/j.fuel.2018.03.101
    [35] ZHIREN, BAI, NORIAKI N, HAYASHI J, AKAMATSU F. A Study on the Structure of the stable inverse diffusion flame from the producer gas of woody biomass: Effects of concentration of carbon dioxide on partial combustion[J]. J Japan Inst Energ,2019,98(8):176−185. doi: 10.3775/jie.98.176
    [36] 祁胜. 基于光学诊断的煤与生物质颗粒混合着火及燃烧特性研究[D]. 杭州: 浙江大学, 2021.

    QI Sheng. Study on ignition and combustion characteristics of mixed coal and biomass particles based on optical diagnosis[D]. Zhejiang: Zhejiang University, 2021.
    [37] 祁胜, 刘丝雨, 辛世荣, 何勇, 刘颖祖, 王智化. 不同湍流强度下煤粉颗粒群着火及燃烧特性的光学诊断研究[J]. 实验流体力学,2020,34(3):61−69.

    QI Sheng, LIU Si-yu, XIN Shi-rong, HE Yong, LIU Ying-zu, WANG Zhi-hua. Optical diagnosis of ignition and combustion characteristics of pulverized coal particles under different turbulence intensities[J]. J Exp Fluid Mech ,2020,34(3):61−69.
    [38] 陈兢. 生物质燃烧中碱金属迁移转化和沉积行为研究[D]. 武汉: 华中科技大学, 2014.

    CHEN Ke. Study on migration, transformation and deposition of alkali metals in biomass combustion[D]. Wuhan: Huazhong University of Science and Technology, 2014.
    [39] 汪淑军, 任学军, 高国栋, 赵勇纲, 白杨, 蒲旸, 姚斌, 娄春. 准东煤燃烧过程中碱金属释放光谱检测研究[J]. 热力发电,2021,50(6):141−144.

    WANG Shu-jun, REN Xue-jun, GAO Guo-dong, ZHAO Yong-gang, BAI Yang, PU Chang, YAO Bin, LOU Chun. Study on the emission spectrum of alkali metals from Zhundong coal during combustion[J]. Therm Power Gen,2021,50(6):141−144.
    [40] 李涛, 许东相, 景雪晖, 何勇, 张彦威, 王智化, 周俊虎. 温度对准东煤燃烧碱金属释放特性影响的激光测量研究[J]. 能源工程,2015,3:8−11+19.

    LI Tao, XU Dong-xiang, JING Xue-hui, HE Yong, ZHANG Yan-wei, WANG Zhi-hua, ZHOU Jun-hu. Laser measurement of the effect of temperature on the release characteristics of alkali metals from Zhundong coal combustion[J]. J Energ Eng,2015,3:8−11+19.
    [41] 何勇. 煤及气化煤气燃烧过程中的碱金属及OH自由基激光在线测量研究[D]. 杭州: 浙江大学, 2013.

    HE Yong. On-line measurement of alkali metals and OH radicals in coal and gasified gas combustion[D]. Hangzhou: Zhejiang University, 2013.
    [42] EYK P, ASHMAN P J, ALWAHABI Z T, NATHAN G J. Measurement of atomic Na released from a coal particle using quantitative planar laser-induced fluorescence[C]// Proc. Australian Combustion Symposium Proc. Australia Combustion Symposium. 2007.
    [43] EYP P, ASHMAN P J, ALWAHABI Z T, NATHAN G J. Quantitative measurement of atomic sodium in the plume of a single burning coal particle[J]. Combust Flame,2008,155(3):529−537. doi: 10.1016/j.combustflame.2008.05.012
    [44] LIU Y, WAN K, HE Y, WANG Z, XIA J, CEN K. Experimental study of potassium release during biomass-pellet combustion and its interaction with inhibitive additives[J]. Fuel,2020,260:116346.
    [45] 刘颖祖. 单颗粒煤及生物质燃烧过程中碱金属释放的激光测量及数值模拟[D]. 浙江: 浙江大学, 2018.

    LIU Ying-zu. Laser measurement and numerical simulation of alkali metal emission during single particle coal and biomass combustion[D]. Hangzhou: Zhejiang University, 2018.
    [46] LIU Y, WANG Z, XIA J, LUC V, WAN K, YONG H, RONALD W, HAMID B, CEN K. Measurement and kinetics of elemental and atomic potassium release from a burning biomass pellet[J]. Proc Combust Inst,2019,37(3):2681−2688.
  • 加载中
图(10)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  227
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-23
  • 修回日期:  2022-11-23
  • 录用日期:  2023-01-12
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回