留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤岩显微组分荧光特征与激发时间的关系

张雅茹 白金锋 靳立军 李扬 胡浩权

张雅茹, 白金锋, 靳立军, 李扬, 胡浩权. 煤岩显微组分荧光特征与激发时间的关系[J]. 燃料化学学报(中英文), 2023, 51(9): 1209-1219. doi: 10.1016/S1872-5813(23)60339-1
引用本文: 张雅茹, 白金锋, 靳立军, 李扬, 胡浩权. 煤岩显微组分荧光特征与激发时间的关系[J]. 燃料化学学报(中英文), 2023, 51(9): 1209-1219. doi: 10.1016/S1872-5813(23)60339-1
ZHANG Ya-ru, BAI Jin-feng, JIN Li-jun, LI Yang, HU Hao-quan. Relationship between fluorescence characteristics of coal macerals and excitation time[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1209-1219. doi: 10.1016/S1872-5813(23)60339-1
Citation: ZHANG Ya-ru, BAI Jin-feng, JIN Li-jun, LI Yang, HU Hao-quan. Relationship between fluorescence characteristics of coal macerals and excitation time[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1209-1219. doi: 10.1016/S1872-5813(23)60339-1

煤岩显微组分荧光特征与激发时间的关系

doi: 10.1016/S1872-5813(23)60339-1
基金项目: 国家重点研发计划(2016YFB0600301)资助
详细信息
    通讯作者:

    Tel: + 86-411-84986157,E-mail: hhu@dlut.edu.cn

  • 中图分类号: TQ520.1

Relationship between fluorescence characteristics of coal macerals and excitation time

Funds: The project was supported by the National Key Research and Development Program of China (2016YFB0600301)
  • 摘要: 本研究采用360 nm波长的单波长激光作为激发光源,在偏光显微镜下对煤光片进行激发,研究激发时间对显微组分荧光特征的影响。通过对六种炼焦煤各显微组分的荧光强度与激发时间的关系研究表明,煤岩显微组分的荧光特征与煤岩类型及变质程度有关;激发时间对各显微组分的荧光参数具有一定的影响。通过对比不同激发时间下的相对荧光强度,发现15 s内的平均相对荧光强度可作为表征不同显微组分的结构和变质程度的光学参数。该方法的实质是将原子核外层电子的运动状况通过宏观的荧光光谱和具体的相对荧光强度进行表达,使其微观上的复杂性简化为宏观上和数值上可以被人们普遍接受的形式。
  • FIG. 2664.  FIG. 2664.

    FIG. 2664.  FIG. 2664.

    图  1  煤岩显微组分荧光强度测定装置示意图

    Figure  1  Device for measuring the fluorescence intensity of coal macerals

    1: Laser controller; 2: Rotating carrier table (with a stepper motor); 3: Sample; 4: UV excitation light source; 5: Objective lens (LD 50 × /0.50); 6: Eyepiece; 7: Optical fiber; 8: Polarizing microscope; 9: Revolving nosepiece; 10: Objective lens (oil, × 50); 11: Spectrometer; 12: Darkroom; 13: Camera obscura; 14: Computer

    图  2  镜质组抛光表面(干物镜“Epiplan”LD 50×/0.50,反射光) (a)以及最大荧光强度(b)及对应波长(c)随时间变化

    Figure  2  Vitrinite on the polished surface (objective "Epiplan" LD 50×/0.50 under normal reflected light) (a), variation of maximum fluorescence intensity (b) and corresponding wavelength (c) with time

    图  3  壳质组抛光表面(干物镜“Epiplan”LD 50×/0.50,反射光) (a)以及最大荧光强度(b)和对应波长(c)随时间变化

    Figure  3  Liptinite on the polished surface (objective "Epiplan" LD 50×/0.50 under normal reflected light) (a), variation of maximum fluorescence intensity (b) and corresponding wavelength (c) with time

    图  4  惰质组抛光表面(干物镜“Epiplan”LD 50×/0.50,反射光) (a)及其最大荧光强度(b)和对应波长c)随时间变化

    Figure  4  Inertinite on polished surface of (objective “Epiplan” LD 50×/0.50 under normal reflected light) (a), and variation of maximum fluorescence intensity (b) and corresponding wavelength (c) with time

    图  5  不同激发时间煤岩显微组分相对荧光强度

    Figure  5  Relative fluorescence intensity of coal macerals under different excitation time

    图  6  六种煤样中镜质组荧光强度及对应波长随激发时间的变化

    Figure  6  Vitrinite fluorescence intensity and corresponding wavelength of different coal samples with time 1# (a), 2# (b), 3# (c), 4# (d), 5# (e), 6# (f)

    图  7  六种煤中的煤岩显微组分相对荧光强度随激发时间的变化

    Figure  7  RFI alterations of vitrinites (a), liptinites (b), inertinites (c) with time of six coal samples

    图  8  六种煤样中壳质组荧光强度及对应波长随激发时间的变化

    Figure  8  Liptinite fluorescence intensity and corresponding wavelength of different coal samples with time, 1# (a), 2# (b), 3# (c), 4#(d), 5# (e), 6# (f)

    图  9  六种煤样中惰质组荧光强度及对应波长随激发时间的变化

    Figure  9  Inertinites fluorescence intensity and corresponding wavelength of different coal samples with time, 1# (a), 2# (b), 3# (c), 4# (d), 5# (e), 6# (f)

    图  10  多组分荧光强度RFIM$\overline{R}$max值关系

    Figure  10  Relationship between RFIM and $\overline{R}$max

    图  11  多组分相对荧光强度RFIMG值关系

    Figure  11  Relationship between RFIM and G index

    表  1  样品煤岩显微组分含量

    Table  1  Macerals contents of coal samples

    SampleMaceral content /%
    Vitrinite (V)Inertinite (I0)Liptinite (L)Mineral (M)
    1#89.95.22.12.8
    2#73.524.50.81.2
    3#77.617.31.04.1
    4#75.318.82.83.1
    5#92.74.50.22.6
    6#86.511.90.11.5
    下载: 导出CSV

    表  2  煤样镜质组反射率分布

    Table  2  Vitrinite reflectance of coal samples

    SampleRran/%$\overline{{R} }$ran/%$\overline{{R} }$max/%SDCodingC.V
    maximumminimum
    1#0.701.000.850.910.05206
    2#0.701.050.850.910.06908
    3#0.801.401.101.170.107110
    4#0.751.351.111.180.120111
    5#0.901.601.261.340.125110
    6#0.951.601.411.500.147110
    *Rran: random reflectance; $\overline{{R} }$max: mean maximum reflectance; SD: standard deviation; Coding: the code of reflectogram of vitrinite; C.V: Coefficient of variation of vitrinite random reflectance, C.V=SD /$\overline{{R} }$ran × 100%
    下载: 导出CSV

    表  3  煤样的工业分析、元素分析和黏结特性分析

    Table  3  Proximate analysis, ultimate analysis and caking properties of coal samples

    SampleProximate analysis w/%Ultimate analysis wdaf/%H/CGY/mm
    MadAdVdafFCdaf*CHNSO*
    1#0.837.5439.3560.6578.585.301.560.8413.720.8110133.5
    2#0.489.2428.1871.8277.464.820.980.3716.370.758715.0
    3#0.4910.4731.2868.7276.284.651.500.5117.060.739226.0
    4#0.6510.2631.9468.0676.654.661.500.4916.700.739128.0
    5#0.489.0127.0073.0079.674.761.640.4613.470.729422.1
    6#0.679.9219.6180.3981.234.101.281.5411.850.608514.6
    *: by difference; G: caking index; Y: plastometric index
    下载: 导出CSV

    表  4  样品煤岩显微组分荧光参数对照表

    Table  4  Comparison of fluorescence parameters of coal macerals

    Fluorescence parameterVitriniteLiptiniteInertinite
    Mean fluorescence intensity for 15 s, FI1558.56143.3994.16
    Mean fluorescence intensity for 750 s, FI75046.32140.4575.78
    Mean fluorescence intensity from initial excited state to stationary state, FIA69.85155.3478.59
    Mean intensity of excitation light source within15 s, LSI151.924.1651.16
    Mean intensity of excitation light source within 750 s, LSI7501.723.3947.66
    Mean intensity of excitation light source from the initial excited state to stationary state, LSIA3.655.1157.03
    Mean relative fluorescence intensity within15 s, RFI1530.5034.501.85
    Mean relative fluorescence intensity within 750 s RFI75026.9341.431.59
    Mean relative fluorescence intensity from the initial excited state to stationary state, RFIA22.8525.661.42
    下载: 导出CSV
  • [1] WEI Q W, PANG K L, WU J, LIANG C. Coke characteristics and formation mechanism based on the hot tamping coking[J]. J Anal Appl Pyrolysis,2022,161:105381. doi: 10.1016/j.jaap.2021.105381
    [2] ZHU K, CHEN Z M, YE S X, GENG S H, ZHANG Y W, LU X G. Gasification of iron coke and cogasification behavior of iron coke and coke under simulated hydrogen-rich blast furnace condition[J]. Int J Min Met Mater,2022,29(10):1839−1850. doi: 10.1007/s12613-022-2429-0
    [3] SUN L L, CUI H J, GE Q S. Will China achieve its 2060 carbon neutral commitment from the provincial perspective?[J]. Adv Clim Chang Res,2022,13(2):169−178. doi: 10.1016/j.accre.2022.02.002
    [4] VAN G P. Review of the UV-fluorescence microphotometry of fresh and fossil exines and exosporia[J]. Sporopollenin,1971,659−685.
    [5] TEICHMULLER M, Wolf M. Application of fluorescence microscopy in coal petrology and oil exploration[J]. J Microsc-Oxford,1977,109(1):49−73. doi: 10.1111/j.1365-2818.1977.tb01116.x
    [6] TELCHMULLER M, OTTENJANN K. Type and diagenesis of liptinites and lipoid-substances in an oil source rock on basis of fluorescence microscopical studies[J]. Erdol Kohle Erdgas Petrochem,1977,30(9):387−398.
    [7] SENFTLE J T, LARTER S R. The geochemistry of exinites. 1. Evaluation of spectral fluorescence of a series of modern resins and fossil resinites[J]. Org Geochem,1988,13(4):973−980.
    [8] OTTENJANN K. Fluorescence alteration and its value for studies of maturation and bituminization[J]. Org Geochem,1988,12(4):309−321. doi: 10.1016/0146-6380(88)90005-8
    [9] CRELLING J C. Current uses of fluorescence microscopy in coal petrology[J]. J Microsc-Oxford,1983,132(3):251−266. doi: 10.1111/j.1365-2818.1983.tb04591.x
    [10] LIN R, DAVIS A, BENSLEY D F, DERBYSHIRE F J. Vitrinite secondary fluorescence - its chemistry and relation to the development of a mobile phase and thermoplasticity in coal[J]. Int J Coal Geol,1986,6(3):215−228. doi: 10.1016/0166-5162(86)90002-9
    [11] PRADIER B, LARGEAU C, DERENNE S, MARTINEZ L, BERTRAND P, POUET Y. Chemical basis of fluorescence alteration of crude oils and kerogens; I, Microfluorimetry of an oil and its isolated fractions; relationships with chemical structure[J]. Org Geochem,1990,16(1-3):451−460. doi: 10.1016/0146-6380(90)90061-4
    [12] RATHBONE R F, DAVIS A. The effects of depositional environment on vitrinite fluorescence intensity[J]. Org Geochem,1993,20(2):177−186. doi: 10.1016/0146-6380(93)90036-B
    [13] CODY G D, ADE H, WIRICK S, MITCHELL G. D, DAVIS A. Determination of chemical-structural changes in vitrinite accompanying luminescence alteration using C-NEXAFS analysis[J]. Org Geochem,1998,28(7):441−455.
    [14] 王越, 丁华, 武琳琳, 张宇宏, 白向飞, 曲思建. 低温热转化过程中煤中典型壳质组的荧光和Micro-FTIR特征[J]. 燃料化学学报,2021,49(5):598−608. doi: 10.19906/j.cnki.JFCT.2021025

    WANG Yue, DING Hua, WU Lin-lin, ZHANG Yu-hong, BAI Xiang-fei, QU Si-jian. Fluorescence and Micro-FTIR characteristics of typical liptinite at low temperature thermal conversion[J]. J Fuel Chem Technol,2021,49(5):598−608. doi: 10.19906/j.cnki.JFCT.2021025
    [15] MT/T594—1996, 煤显微组分荧光光谱测定方法[S].

    MT/T594—1996, Methods for determination of fluorescence spectrometry of maceral in coal[S].
    [16] MT/T595—1996, 煤显微组分荧光强度测定方法[S].

    MT/T594—1996, Methods for determination of fluorescence intensity of maceral in coal[S].
    [17] DEATH D L, EBERHARDT J E, HAUB J G, READ R. Laser-induced macrofluorescence of coal: Spectra, rank, mineral and maceral dependency[J]. Fuel,1992,71(6):661−668. doi: 10.1016/0016-2361(92)90169-O
    [18] DEATH D L, EBERHARDT J E, READ R. Laser-induced macrofluorescence of coal: Oxidation and spectral effects[J]. Fuel,1991,70(9):1065−1071. doi: 10.1016/0016-2361(91)90261-8
    [19] DEATH D L, EBERHARDT J E, READ R. Laser-induced macrofluorescence of coal: Oxidation and macroalteration[J]. Fuel,1991,70(9):1073−1077. doi: 10.1016/0016-2361(91)90262-9
    [20] PETERSEN H I, SHERWOOD N, MATHIESEN A, FYHN M B. W, DAU N. T, RUSSELL N, BOJESEN-Koefoed, NIELSEN L. H. Application of integrated vitrinite reflectance and FAMM analyses for thermal maturity assessment of the northeastern Malay Basin, offshore Vietnam: Implications for petroleum prospectivity evaluation[J]. Mar Petrol Geol,2009,26(3):319−332. doi: 10.1016/j.marpetgeo.2008.04.004
    [21] FAIZ M, SHERWOOD N, WILKINS R W T. Elemental composition of dispersed vitrinite in marine Jurassic source rocks of the Vulcan Sub-basin, Australia: Implications for vitrinite reflectance suppression[J]. Mar Petrol Geol,2021,133:105278. doi: 10.1016/j.marpetgeo.2021.105278
    [22] WILKINS R W T, WILMSHURST J R, RUSSELL N J, HLADKY G, ELLACOTT M V, BUCKINGHAM C. Fluorescence alteration and the suppression of vitrinite reflectance[J]. Org Geochem,1992,18(3):629−640.
    [23] WILKINS R W T, ELLACOTT M V, WILMSHURST J R, BUCKINGHAM C. The suppression of inertinite reflectance[J]. Org Geochem,1994,21(8):871−875.
    [24] WILKINS R W T, WILMSHURST J R, HLADKY G, ELLACOTT M V, BUCKINGHAM C P. Should fluorescence alteration replace vitrinite reflectance as a major tool for thermal maturity determination in oil-exploration[J]. Org Geochem,1995,22(1):191−209. doi: 10.1016/0146-6380(95)90017-9
    [25] LO H B, WILKINS R W T, ELLACOTT M V, BUCKINGHAM C P. Assessing the maturity of coals and other rocks from North America using the fluorescence alteration of multiple macerals (FAMM) technique[J]. Int J Coal Geol,1997,33(1):61−71. doi: 10.1016/S0166-5162(96)00004-3
    [26] VELD H, WILKINS R W T, XIAO X M, BUCKINGHAM C P. A fluorescence alteration of multiple macerals (FAMM) study of Netherlands coals with ''normal'' and ''deviating'' vitrinite reflectance[J]. Org Geochem,1997,26(3/4):247−255. doi: 10.1016/S0146-6380(96)00156-8
    [27] WILKINS R W T, GEORGE S C. Coal as a source rock for oil: A review[J]. Int J Coal Geol,2002,50(1-4):317−361. doi: 10.1016/S0166-5162(02)00134-9
    [28] WILKINS R W T, DIESSEL C F K, BUCKINGHAM C P. Comparison of two petrographic methods for determining the degree of anomalous vitrinite reflectance[J]. Int J Coal Geol,2002,52(1):45−62.
    [29] WILKINS R W T, BOUDOU R, SHERWOOD N, XIAO X M. Thermal maturity evaluation from inertinites by Raman spectroscopy: The‘RaMM’technique[J]. Int J Coal Geol,2014,128–129:143−152. doi: 10.1016/j.coal.2014.03.006
    [30] WILKINS R W T, WANG M, Gan H J, LI Z S. A RaMM study of thermal maturity of dispersed organic matter in marine source rocks[J]. Int J Coal Geol,2015,150:252−264.
    [31] XIAO X M, WILKINS R W T, LIU D H, LIU, Z F, SHEN J Q. Laser-induced fluorescence microscopy - application to possible high rank and carbonate source rocks[J]. Int J Coal Geol,2002,51(2):129−141. doi: 10.1016/S0166-5162(02)00085-X
    [32] ZHANG Y R, BAI J F, ZHONG X Y, JIN L J, LI Y, HU H Q. Evaluation of coking coal by a modified fluorescence alteration of multiple macerals technique[J]. Fuel,2021,291:120138. doi: 10.1016/j.fuel.2021.120138
    [33] 赵长毅. 显微组分荧光机理及其应用[J]. 石油勘探与开发,1996,23(2):8−10. doi: 10.3321/j.issn:1000-0747.1996.02.003

    ZHAO Chang-yi. Fluorescence mechanism of maceral and its application[J]. Petrol Explor Dev,1996,23(2):8−10. doi: 10.3321/j.issn:1000-0747.1996.02.003
    [34] 白向飞, 李文华, 罗陨飞, 陈洪博. 中国西部弱还原性煤的结构特征初步研究[J]. 煤炭转化,2006,(4):5−8. doi: 10.3969/j.issn.1004-4248.2006.04.002

    BAI Xiang-fei, LI Wen-hua, LUO Yun-fei, CHEN Hong-bo. Preliminary study on structural characteristics of weakly reducing coal in western China[J]. Coal Convers,2006,(4):5−8. doi: 10.3969/j.issn.1004-4248.2006.04.002
  • 2022-A071+补充材料_中文版.docx
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  107
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2022-12-29
  • 录用日期:  2022-12-30
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回