留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Pr/Zr atomic ratio on the activity of catalytic oxidation denitration of PrxZr1−xO2–δ

GONG You-jing HE Ren-guang ZHAO Guang-lei JIA Li-juan GAO Ji-yun WANG Fang DUAN Kai-jiao LIU Tian-cheng

龚宥精, 何人广, 赵光垒, 贾丽娟, 高冀芸, 王访, 段开娇, 刘天成. Pr/Zr原子比对PrxZr1−xO2−δ催化氧化脱硝活性的影响[J]. 燃料化学学报(中英文), 2023, 51(7): 996-1006. doi: 10.1016/S1872-5813(23)60341-X
引用本文: 龚宥精, 何人广, 赵光垒, 贾丽娟, 高冀芸, 王访, 段开娇, 刘天成. Pr/Zr原子比对PrxZr1−xO2−δ催化氧化脱硝活性的影响[J]. 燃料化学学报(中英文), 2023, 51(7): 996-1006. doi: 10.1016/S1872-5813(23)60341-X
GONG You-jing, HE Ren-guang, ZHAO Guang-lei, JIA Li-juan, GAO Ji-yun, WANG Fang, DUAN Kai-jiao, LIU Tian-cheng. Effect of Pr/Zr atomic ratio on the activity of catalytic oxidation denitration of PrxZr1−xO2–δ[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 996-1006. doi: 10.1016/S1872-5813(23)60341-X
Citation: GONG You-jing, HE Ren-guang, ZHAO Guang-lei, JIA Li-juan, GAO Ji-yun, WANG Fang, DUAN Kai-jiao, LIU Tian-cheng. Effect of Pr/Zr atomic ratio on the activity of catalytic oxidation denitration of PrxZr1−xO2–δ[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 996-1006. doi: 10.1016/S1872-5813(23)60341-X

Pr/Zr原子比对PrxZr1−xO2−δ催化氧化脱硝活性的影响

doi: 10.1016/S1872-5813(23)60341-X
详细信息
  • 中图分类号: X511

Effect of Pr/Zr atomic ratio on the activity of catalytic oxidation denitration of PrxZr1−xO2–δ

Funds: The project was supported by the National Natural Science Foundation of China (51568068) and the Young and Middle-aged Academic and Technical Leaders Reserve Talent Project (202105AC160054)
More Information
  • 摘要: 采用溶胶-凝胶法制备了不同Pr/Zr原子比的PrxZr1−xO2−δ催化剂用于催化氧化脱硝。结果表明,催化氧化脱硝效率随Pr原子比的增加而先提高后降低;当Pr/Zr原子比为5∶5时,在250 °C下,最佳脱硝活性可达94.62%。采用SEM、N2 吸附-脱附、XRD、XPS、H2-TPR和FT-IR对催化剂进行了表征。结果表明,活性最好的催化剂(Pr0.5Zr0.5O2−δ)具有“层状”形貌,表面孔隙多,比表面积大,孔体积分别为77.74 m2/g和0.66 cm3/g。此外,随着Pr原子的增加,晶相从c-ZrO2 转变为Pr2Zr2O7。XPS和H2-TPR结果表明,表面化学吸附氧和表面Pr4 + 氧化物增加,Pr原子比的上升有利于产生氧空位(Vӧ),有利于提高催化氧化脱硝效率。FT-IR表征结果表明,Pr0.5Zr0.5O2−δ固溶体具有较高的NO选择性,有利于NO的催化氧化。抗SO2和H2O毒性实验表明,5∶5的Pr/Zr原子比的催化剂具有更好的抗毒性。此外,利用IC分析吸收产物,结果表明,吸收液中的主要产物是${\rm{NO}}^-_2 $${\rm{NO}}^-_3 $
  • FIG. 2473.  FIG. 2473.

    FIG. 2473.  FIG. 2473.

    Figure  1  Device of denitration experiment and flow chart

    Figure  2  Catalytic oxidation deNOx efficiency of PrxZr1−xO2−δ catalysts with different atom ratios of Pr/Zr (the rotator speed was 800 r/min, the solution concentration of Na2CO3 was 0.02 mol/L)

    Figure  3  SEM picture of PrxZr1−xO2−δ catalysts with different atom ratios of Pr/Zr

    (a): Pr0.1Zr0.9O2−δ; (b): Pr0.2Zr0.8O2−δ; (c): Pr0.3Zr0.7O2−δ; (d): Pr0.4Zr0.6O2−δ; (e): Pr0.5Zr0.5O2−δ; (f): Pr0.6Zr0.4O2−δ

    Figure  4  N2 adsorption-desorption isotherm (a) the pore size distribution (b) of PrxZr1−xO2−δ catalysts with different atom ratios of Pr/Zr

    Figure  5  XRD patterns of the PrxZr1−xO2−δ catalysts with different atomic ratios of Pr/Zr

    Figure  6  XPS spectrum of PrxZr1−xO2−δ with different atom ratios of Pr/Zr (a): XPS survey; (b): Pr 3d; (c): Zr 3d; (d): O 1s

    Figure  7  H2-TPR patterns of PrxZr1−xO2−δ with different atom ratios of Pr/Zr

    Figure  8  FT-IR patterns of PrxZr1−xO2−δ catalysts

    Figure  9  Effect of SO2 on the catalytic oxidation removal of NOx activity by PrxZr1−xO2−δ catalyst

    (Absorbent solution: 0.02 mol/L Na2CO3, absorbent solution flow rate: 60 mL/min, gas flow rate: 300 mL/min, gas-liquid ratio: 5∶1, RPB rotor speed: 800 r/min)

    Figure  10  Effect of H2O on the catalytic oxidation removal of NOx activity by PrxZr1−xO2−δ catalyst

    (Absorbent solution: 0.02 mol/L Na2CO3, absorbent solution flow rate: 60 mL/min, gas flow rate: 300 mL/min, gas-liquid ratio: 5∶1, RPB rotor speed: 800 r/min)

    Figure  11  Product analysis of NOx absorption liquid by catalytic oxidation of PrxZr1−xO2−δ catalyst

    (Absorbent solution: 0.02 mol/L Na2CO3, absorbent solution flow rate: 60 mL/min, gas flow rate: 300 mL/min, gas-liquid ratio: 5∶1, RPB rotor speed: 800 r/min)

    Table  1  Specific surface area and total pore volume of PrxZr1−xO2−δ with different atom ratios of Pr/Zr

    CatalystSpecific area /(m2·g−1)Pore volume /(cm3·g−1)
    Pr0.1Zr0.9O2−δ26.520.28
    Pr0.2Zr0.8O2−δ30.700.30
    Pr0.3Zr0.7O2−δ89.030.19
    Pr0.4Zr0.6O2−δ51.770.52
    Pr0.5Zr0.5O2−δ77.740.66
    Pr0.6Zr0.4O2−δ91.920.62
    下载: 导出CSV

    Table  2  Results of the Pr 3d spectrum of PrxZr1−xO2−δ with different atom ratios of Pr/Zr

    CatalystPr /%Pr 3d5/2 /eVPr 3d3/2 /eVE1 /eVSatellite 1Satellite 2E2 /eVPr4 + /(Pr3 + + Pr4 + )
    Pr0.1Zr0.9O2−δ9.09953.39933.2220.17948.56928.9819.580.35
    Pr0.2Zr0.8O2−δ13.77953.26933.1120.15948.42928.8419.580.36
    Pr0.3Zr0.7O2−δ20.50953.54933.4120.13948.81929.2319.580.37
    Pr0.4Zr0.6O2−δ25.97954.02933.8120.21949.14929.5619.580.39
    Pr0.5Zr0.5O2−δ26.36953.23933.0520.18948.30928.7219.580.42
    Pr0.6Zr0.4O2−δ29.17953.24933.0620.18948.22928.6419.580.59
    下载: 导出CSV

    Table  3  Result of O 1s spectrum of PrxZr1−xO2−δ with different atom ratios of Pr/Zr

    CatalystOα /%Oβ /%Oγ /%(Oβ + Oγ)/Oα
    Pr0.1Zr0.9O2−δ40.1010.045.810.39
    Pr0.2Zr0.8O2−δ38.908.917.510.42
    Pr0.3Zr0.7O2−δ28.4228.685.991.22
    Pr0.4Zr0.6O2−δ30.4524.254.510.94
    Pr0.5Zr0.5O2−δ23.8729.163.521.37
    Pr0.6Zr0.4O2−δ28.6128.951.071.04
    下载: 导出CSV

    Table  4  Integral result H2-TPR reduction peaks of PrxZr1−xO2−δ catalysts

    Catalystα /%β /%α/β
    Pr0.1Zr0.9O2−δ9.3190.690.10
    Pr0.2Zr0.8O2−δ13.7786.230.16
    Pr0.3Zr0.7O2-δ14.4385.570.17
    Pr0.4Zr0.6O2−δ31.2368.770.45
    Pr0.5Zr0.5O2−δ72.0427.962.58
    Pr0.6Zr0.4O2−δ62.8136.481.72
    下载: 导出CSV
  • [1] CHEN L, WANG X X, CONG Q L, MA H Y, LI S J, LI W. Design of a hierarchical Fe-ZSM-5@CeO2 catalyst and the enhanced performances for the selective catalytic reduction of NO with NH3[J]. Chem Eng J,2019,369:957−967. doi: 10.1016/j.cej.2019.03.055
    [2] LIU Y Y, GAO F Y, YI H H, YANG C, ZHANG R C, ZHOU Y S, TANG X L. Recent advances in selective catalytic oxidation of nitric oxide (NO-SCO) in emissions with excess oxygen: A review on catalysts and mechanisms[J]. Environ Sci Pollut Res Int,2021,28(3):2549−2571. doi: 10.1007/s11356-020-11253-6
    [3] GHOLAMI Z, LUO G H, GHOLAMI F, YANG F. Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: A review[J]. Catal Rev,2020,63(1):68−119.
    [4] GUO R T, HAO J K, PAN W G, YU Y L. Liquid phase oxidation and absorption of NO from flue gas: A review[J]. Sep Sci Technol,2015,50(2):310−321. doi: 10.1080/01496395.2014.956761
    [5] ADEWUYI Y G, KHAN M A. Nitric oxide removal by combined persulfate and ferrous-EDTA reaction systems[J]. Chem Eng J,2015,281:575−587. doi: 10.1016/j.cej.2015.06.114
    [6] CHEN R, ZHANG T S, GUO Y Q, WANG J W, WEI J X, YU Q J. Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics[J]. Chem Eng J,2021,420:127588−127631. doi: 10.1016/j.cej.2020.127588
    [7] SUN P, GUO R T, LIU S M, WANG S X, PAN W G, LI M Y. The enhanced performance of MnOx catalyst for NH3-SCR reaction by the modification with Eu[J]. Appl Catal A: Gen,2017,531:129−138. doi: 10.1016/j.apcata.2016.10.027
    [8] CHEN L, XU Z W, HE C, WANG Y G, LIANG Z Y, ZHAO Q X, LU Q. Gas-phase total oxidation of nitric oxide using hydrogen peroxide vapor over Pt/TiO2[J]. Appl Surf Sci,2018,457:821−830. doi: 10.1016/j.apsusc.2018.07.032
    [9] CHENG X X, BI X T. A review of recent advances in selective catalytic NOx reduction reactor technologies[J]. Particuology,2014,16:1−18. doi: 10.1016/j.partic.2014.01.006
    [10] ARVAJOVÁ A B, BOUTIKOS P, PEČINKA R, KOČÍ P. Global kinetic model of NO oxidation on Pd/γ-Al2O3 catalyst including PdOx formation and reduction by CO and C3H6[J]. Appl Catal B: Environ,2020,260:118141−118149. doi: 10.1016/j.apcatb.2019.118141
    [11] ZHANG L, SU H, ZHANG L, YANG J, WANG Y S. MnOx-CuOx cordierite catalyst for selective catalytic oxidation of the NO at low temperature[J]. Environ Sci Pollut Res Int,2020,27(19):23695−23706. doi: 10.1007/s11356-020-08785-2
    [12] SHAO J M, LIN F W, HUANG Y K, WANG Z H, LI Y, CHEN G Y, CEN K F. MnO fabrication with rational design of morphology for enhanced activity in NO oxidation and SO2 resistance[J]. Appl Surf Sci,2020,503:144064−144079. doi: 10.1016/j.apsusc.2019.144064
    [13] SALMAN A R, HYRVE S M, REGLI S K, ZUBAIR M, ENGER B C, LØDENG R, WALLER D, RØNNING M. Catalytic oxidation of NO over LaCo1−xBxO3 (B = Mn, Ni) perovskites for nitric acid production[J]. Catalysts,2019,9(5):429−440. doi: 10.3390/catal9050429
    [14] YI H H, YANG K, TANG X L, ZHAO S Z, GAO F Y, HUANG Y H, YANG Z Y, WANG J G, SHI Y R, XIE X Z. Simultaneous desulfurization and denitrification on the SAPO-34@Al2O3 core-shell structure adsorbent[J]. Energy Fuels,2018,32(11):11694−11700. doi: 10.1021/acs.energyfuels.8b02847
    [15] LI Y, CHENG H, LI D Y, QIN Y S, XIE Y M, WANG S D. WO3/CeO2-ZrO2, a promising catalyst for selective catalytic reduction (SCR) of NOx with NH3 in diesel exhaust[J]. Chem. Commun.,2008,12:1470−1472.
    [16] MENG D M, ZHAN W C, GUO Y, GUO Y L, WANG L, LU G Z. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: Promotional role of Sm and its catalytic performance[J]. ACS Catal,2015,5(10):5973−5983. doi: 10.1021/acscatal.5b00747
    [17] BELLAKKI M B, SHIVAKUMARA C, BAIDYA T, PRAKASH A S, VASANTHACHARYA N Y, HEDGE M S. Synthesis, structure and oxygen-storage capacity of Pr1−xZrxO2−δ and Pr1−x−yPdyZrxO2−δ[J]. Mater Res Bull,2008,43(10):2658−2667. doi: 10.1016/j.materresbull.2007.10.033
    [18] NAKATSUJI T, KUNISHIGE M, LI J Y, HASHIMOTO M, MATSUZONO Y. Effect of CeO2 addition into Pd/Zr-Pr mixed oxide on three-way catalysis and thermal durability[J]. Catal Commun,2013,35:88−94. doi: 10.1016/j.catcom.2013.02.002
    [19] ROSSIGNOL S, GÉRARD F, MESNARD D, KAPPENSTEIN C, DUPREZ D. Structural changes of Ce-Pr-O oxides in hydrogen: A study by in situ X-ray diffraction and Raman spectroscopy[J]. J Mater Chem,2003,13(12):3017−3020. doi: 10.1039/B306726B
    [20] NIU G, HILDEBRANDT E, SCHUBERT MA, BOSCHERINI F, ZOELLNER MH, ALFF L, WALCZYK D, ZAUMSEIL P, COSTINA I, WILKENS H, SCHROEDER T. Oxygen vacancy induced room temperature ferromagnetism in Pr-doped CeO2 thin films on silicon[J]. ACS Appl Mater Interfaces,2014,6(20):17496−17505.
    [21] BURNS J R, RAMSHAW C. Process intensification: Visual study of liquid maldistribution in rotating packed beds[J]. Chem Eng Sci,1996,51(8):1347−1352. doi: 10.1016/0009-2509(95)00367-3
    [22] LI R, WU B, CHEN Y Q, Ren G Q, DUAN K J, LIU T C. Influence of polyethylene glycol on the catalytic activity of MnFeOx for NO oxidation at low-temperature[J]. Catal Lett,2019,149:1864−1873. doi: 10.1007/s10562-019-02793-9
    [23] YAO Y Q, YING Y F, LUO M F, WANG Y J, MA J M. Mesoporous structure of praseodymium-stabilized zirconia[J]. Mater. Lett,2007,61(1):192−195. doi: 10.1016/j.matlet.2006.04.029
    [24] DOMÉNECH A, MONTOYA N, ALARCÓN J. Electrochemical characterization of praseodymium centers in PrxZr1−xO2 zirconias using electrocatalysis and photoelectrocatalysis[J]. J Solid State Electrochem,2012,16:963−975. doi: 10.1007/s10008-011-1470-0
    [25] FAN F K, KUZNETSOV A K, KELER É K. Zirconates of the rare earth elements and their physicochemical properties Communication 2. Praseodymium zirconate Pr2Zr2O7, Bulletin of the Academy of Sciences[J]. USSR Div Chem Sci,1965,14:573−576. doi: 10.1007/BF00846706
    [26] JIE L. Preparation and structure of LnO(2-δ)-ZrO2 (Ln=Ce, Tb, Pr) oxygen storage material[M]. Rare Earth, 2009, 30: 15-18.
    [27] NASKAR M K, GANGULI D. Rare-earth doped zirconia fibres by sol-gel processing[J]. J Mater Sci,1996,31:6263−6267. doi: 10.1007/BF00354448
    [28] CAO X H, LU J C, ZHAO Y T, TIAN R, ZHANG W J, HE D D, LUO Y M. Promotional effects of rare-earth praseodymium (Pr) modification over MCM-41 for methyl mercaptan catalytic decomposition[J]. Processes,2021,9:400−414. doi: 10.3390/pr9020400
    [29] JIANG N, ZHOU X, JIANG Y F, ZHAO Z W, MA L B, SHEN C C, LIU Y N, YUAN C Z, SAHAR S, XU A W. Oxygen deficient Pr6O11 nanorod supported palladium nanoparticles: Highly active nanocatalysts for styrene and 4-nitrophenol hydrogenation reactions[J]. RSC Adv,2018,8:17504−17510. doi: 10.1039/C8RA02831A
    [30] ARAGÓN F, GONZALES I, COAQUIRA J, HIDALGO P, BRITO H, ARDISSON J, MACEDO W, MORAIS P. Structural and surface study of praseodymium-doped SnO2 nanoparticles prepared by the polymeric precursor method[J]. J Phys Chem C,2015,119(16):8711−8717. doi: 10.1021/acs.jpcc.5b00761
    [31] OGASAWARA H, KOTANI A, POTZE R, SAWATZKY G A, THOLE B T. Praseodymium 3d- and 4d-core photoemission spectra of Pr2O3[J]. Phys Rev B Condens Matter,1991,44(11):5465−5469. doi: 10.1103/PhysRevB.44.5465
    [32] MARIA F M, HÉCTOR B M, ELOÍSA C. Study of the role of praseodymium and iron in an environment-friendly reddish orange pigment based on Fe doped Pr2Zr2O7: A multifunctional material[J]. J Alloys Compd,2020,845:155841−155852. doi: 10.1016/j.jallcom.2020.155841
    [33] SARTORETTI E, MARTINI F, PIUMETTI M, BENSAID S, RUSSO N, FINO D. Nanostructured equimolar ceria-praseodymia for total oxidations in low-O2 conditions[J]. Catalysts,2020,10:165−181. doi: 10.3390/catal10020165
    [34] LI H C, LI K Z, ZHU X, DU Y P, WEI Y G, ZHAI K, WANG H. Synthesis of mesoporous PrxZr1−xO2−δ solid solution with high thermal stability for catalytic soot oxidation[J]. J Ind Eng Chem,2017,54:126−136. doi: 10.1016/j.jiec.2017.05.025
    [35] MA L, ZHANG W, WANG Y G, CHEN X Y, YU W T, SUN K, SUN H P, LI J H, SCHWANK J W. Catalytic performance and reaction mechanism of NO oxidation over Co3O4 catalysts[J]. Appl Catal B: Environ,2020,267:118371−118414. doi: 10.1016/j.apcatb.2019.118371
    [36] MARKARYAN G L, IKRYANNIKOVA L N, MURAVIEVA G P, TURAKULOVA A O, KOSTYUK B G, LUNINA E V, LUNIN V V, ZHILINSKAYA E, ABOUKAIS A. Red-ox properties and phase composition of CeO2-ZrO2 and Y2O3-CeO2-ZrO2 solid solutions[J]. Colloids Surf,1999,151(3):435−447. doi: 10.1016/S0927-7757(98)00574-3
    [37] TANKOV I, PAWELEC B, ARISHTIROVA K, DAMVANOVA S. Structure and surface properties of praseodymium modified alumina[J]. Appl Surf Sci,2011,258(1):278−284. doi: 10.1016/j.apsusc.2011.08.046
    [38] ZHU J H, WANG Y. Generation and characterization of strong alkali sites on KNO3/Al2O3[J]. Chin J Catal,1996,17:286−290.
    [39] DROŻDŻEWSKI P. Resonance Raman and infrared spectra of the Pr (PAN)3 complex[J]. J Raman Spectrosc,1988,19(2):111−115. doi: 10.1002/jrs.1250190207
    [40] MA Z X, SHENG L P, WANG X W, YUAN W T, CHEN S Y, XUE W, HAN G R, ZHANG Z, YANG H S, LU Y H, WANG Y. Oxide catalysts with ultrastrong resistance to SO2 deactivation for removing nitric oxide at low temperature[J]. Adv Mater,2019,31(42):1903719. doi: 10.1002/adma.201903719
    [41] JIANG H X, WANG J, ZHOU J L, CHEN Y F, ZHANG M H. Effect of promoters on the catalytic performance and SO2/H2O resistance of α-MnO2 catalysts for low temperature NH3-SCR[J]. Ind Eng Chem Res,2019,58(4):1760−1768. doi: 10.1021/acs.iecr.8b05009
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  56
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-11
  • 修回日期:  2022-12-20
  • 录用日期:  2022-12-21
  • 网络出版日期:  2023-02-27
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回