留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温和条件下ZnCl2原位催化松木粉快速热裂解制生物油及生物炭应用

庞兆斌 王建刚 崔洪友 王景华

庞兆斌, 王建刚, 崔洪友, 王景华. 温和条件下ZnCl2原位催化松木粉快速热裂解制生物油及生物炭应用[J]. 燃料化学学报(中英文), 2023, 51(9): 1250-1258. doi: 10.1016/S1872-5813(23)60344-5
引用本文: 庞兆斌, 王建刚, 崔洪友, 王景华. 温和条件下ZnCl2原位催化松木粉快速热裂解制生物油及生物炭应用[J]. 燃料化学学报(中英文), 2023, 51(9): 1250-1258. doi: 10.1016/S1872-5813(23)60344-5
PANG Zhao-bin, WANG Jian-gang, CUI Hong-you, WANG Jing-hua. In-situ catalytic pyrolysis of pine powder by ZnCl2 to bio-oil under mild conditions and application of biochar[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1250-1258. doi: 10.1016/S1872-5813(23)60344-5
Citation: PANG Zhao-bin, WANG Jian-gang, CUI Hong-you, WANG Jing-hua. In-situ catalytic pyrolysis of pine powder by ZnCl2 to bio-oil under mild conditions and application of biochar[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1250-1258. doi: 10.1016/S1872-5813(23)60344-5

温和条件下ZnCl2原位催化松木粉快速热裂解制生物油及生物炭应用

doi: 10.1016/S1872-5813(23)60344-5
基金项目: 国家自然科学基金(21978158)资助
详细信息
    通讯作者:

    E-mail: cuihy@sdut.edu.cn

    wangjh720422@126.com

  • 中图分类号: TK6

In-situ catalytic pyrolysis of pine powder by ZnCl2 to bio-oil under mild conditions and application of biochar

Funds: The project was supported by the National Natural Science Foundation of China (21978158).
  • 摘要: 生物质快速热裂解是生物质转化利用的有效途径,但常因是非催化过程,裂解温度高导致生物油成分复杂难控。本实验以ZnCl2为催化剂,研究了木质素、纤维素、玉米芯和松木粉的热解过程,旨在探索原位催化对快速热裂解的强化作用。本实验通过热重曲线拟合,获得了热裂解的活化能;通过快速热裂解实验,研究了催化作用下热解油组成变化。结果表明,ZnCl2催化可显著降低生物质裂解温度,简化生物油组成。在350 ℃快速热裂解松木粉获得了47%生物油产率,主要成分是纤维素和半纤维素的衍生物。ZnCl2可显著降低纤维素裂解的活化能(由304.78 kJ/mol降低至112.46 kJ/mol),而对木质素的裂解影响不大。裂解后的碳渣在600 ℃二次碳化可获得性能良好的活性炭,苯酚吸附容量可达165 mg/g。
  • FIG. 2668.  FIG. 2668.

    FIG. 2668.  FIG. 2668.

    图  1  生物质热解实验装置示意图

    Figure  1  Schematic drawing of the experimental setup for biomass pyrolysis1-Nitrogen cylinder; 2-Gas flowmeter; 3-Push pull rod; 4-Quartz boat; 5-Tubular furnace; 6-Quartz tube reactor; 7-Low temperature bathing; 8-Graham condenser; 9-Liquid receiver

    图  2  不同ZnCl2用量的PW样品热重分析曲线(a)和差热重分析曲线(b)

    Figure  2  Thermal gravimetric analysis curves (a) and differential thermal gravimetric analysis curves (b) of the PW with different ZnCl2 dosage

    图  3  掺杂ZnCl2和不掺杂ZnCl2的纤维素、木质素、CC的热重分析曲线(a)和差热重分析曲线(b)

    Figure  3  Thermal gravimetric analysis curves (a) and differential thermal gravimetric analysis curves (b) of the samples (cellulose, lignin and CC) with and without ZnCl2

    图  4  不同温度下PW的催化热解和非催化热解的产物分布

    Figure  4  Product distribution in the catalytic and noncatalytic pyrolysis of PW under different temperature

    图  5  不同ZnCl2掺量对PW热解产物分布的影响

    Figure  5  Effect of ZnCl2 dosage on product distribution of PW pyrolysis

    图  6  不同生物质催化热解和非催化热解的产物分布

    Figure  6  Product distribution in the catalytic and non-catalytic pyrolysis of different biomass

    图  7  500、350 ℃催化以及非催化条件下PW生物油的GC-MS谱图

    Figure  7  GC-MS patterns of the bio-oils from PW under different fast pyrolysis conditions

    图  8  ZnCl2掺量对PW裂解生物油中主要化合物相对含量的影响

    Figure  8  Effect of ZnCl2 dosage on the relative content of the compounds in bio-oil obtained by catalytic pyrolysis of PW

    图  9  不同生物质ZnCl2预处理前后裂解生物油中主要化合物的相对含量

    Figure  9  Relative content of main compounds in bio-oils from pyrolysis of different biomass with and without ZnCl2 pretreatment

    图  10  样品的氮吸附-脱附等温线 (a)和孔径分布(b)

    Figure  10  Nitrogen adsorption/desorption isotherms (a) and pore size distribution curves (b) of the samples

    表  1  不同生物质的工业分析和元素分析

    Table  1  Ultimate and proximate analyses of biomass

    MaterialProximate analysis wad/%Ultimate analysis wad/%
    AMVFCCHONS
    Lignin8.4914.6552.9923.8752.524.6415.220.194.28
    Cellulose5.920.0187.906.1743.176.444.410.090
    CC1.801.6082.9513.6545.736.0544.410.410
    PW2.171.4381.5214.8847.916.2142.100.180
    ad: air dried basis; A: ash; M: moisture; V: volatile matter; FC: fixed carbon
    下载: 导出CSV

    表  2  不同样品的热解动力学参数

    Table  2  Kinetic parameters of different samples

    SampleStage ⅠStage Ⅱ
    E /(kJ·mol−1A /s−1R2E /(kJ·mol−1)A /s−1R2
    Cellulose304.789.77 × 10230.998
    Cellulose-1.25112.461.22 × 1080.997
    Lignin66.711.01 × 1030.997
    Lignin-1.2562.894.48 × 1020.998
    CC105.816.60 × 1070.999248.291.74 × 10190.999
    CC-1.25112.913.10 × 1080.999208.994.97 × 10150.999
    PW106.451.19 × 1070.996317.067.56 × 10230.997
    PW-0.5129.344.65 × 1090.998222.241.55 × 10160.999
    PW-1.25143.381.38 × 10110.999169.941.19 × 10120.998
    PW-2.5161.913.25 × 10130.99492.721.16 × 1060.996
    PW-3.75124.812.97 × 1090.999
    PW-5126.236.91 × 1090.999
    下载: 导出CSV

    表  3  生物炭微观结构数据信息

    Table  3  Microscopic structure information of the biochar

    SampleSpecific surface area /(m2·g−1)Pore volume / (cm3·g−1)Average pore size /nm
    totalmicro-meso-totalmicro-meso-
    PW-1.25-35011516714801.570.371.204.37
    PW-35011506285221.570.361.214.16
    AC10259191060.670.460.212.59
    下载: 导出CSV

    表  4  活性炭吸附能力比较

    Table  4  Comparison of the biochar with the activated carbon reported in the literature

    BiomassActivation agentTemperature /℃Adsorption capacity /(mg·g−1)Ref.
    BambooUrea + KHCO3700169[33]
    EucalyptusKOH800222[34]
    Pine shell55025[35]
    Poplar*Urea900160.5[36]
    Bamboo**KC2O4700169.5[37]
    Corn strawZnCl2 + FeCl3900183.43[38]
    Pine woodZnCl2600165this work
    *: with CO2-assisted activation; **: with NH3-assisted activation
    下载: 导出CSV
  • [1] LIANG J, SHAN G C, SUN Y F. Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts[J]. Renewable Sustainable Energy Rev,2021,139:110707. doi: 10.1016/j.rser.2021.110707
    [2] 李承宇, 张军, 袁浩然, 王树荣, 陈勇. 纤维素热解转化研究进展[J]. 燃料化学学报,2021,49(12):1733−1851.

    LI Cheng-yu, ZHANG Jun, YUAN Hao-ran, WANG Shu-rong, CHEN Yong. Research progress of cellulose pyrolysis transformation[J]. J Fuel Chem Technol,2021,49(12):1733−1851.
    [3] WANG S R, DAI G X, YANG H P, LUO Z Y. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Prog Energy Combust Sci,2017,62:33−86. doi: 10.1016/j.pecs.2017.05.004
    [4] BHOI P R, OUEDRAOGO A S, SOLOIU V, QUIRINO R. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable Sustainable Energy Rev,2020,121:109676. doi: 10.1016/j.rser.2019.109676
    [5] RAHMAN M M, LIU R, CAI J. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil – A review[J]. Fuel Process Technol,2018,180:32−46. doi: 10.1016/j.fuproc.2018.08.002
    [6] ZHANG C T, ZHANG L J, LI Q Y, WANG Y, LIU Q, WEI T, DONG D H, SALAVATI S, GHOLIZADEH M, HU X. Catalytic pyrolysis of poplar wood over transition metal oxides: Correlation of catalytic behaviors with physiochemical properties of the oxides[J]. Biomass Bioenergy,2019,124:125−141. doi: 10.1016/j.biombioe.2019.03.017
    [7] DAI G X, WANG S R, HUANG S Q, ZOU Q. Enhancement of aromatics production from catalytic pyrolysis of biomass over HZSM-5 modified by chemical liquid deposition[J]. J Anal Appl Pyrolysis,2018,134:439−445. doi: 10.1016/j.jaap.2018.07.010
    [8] HASSAN N S, JALIL A A, HITAM C N C, VO D V N, NABGAN W. Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review[J]. Environ Chem Lett,2020,18(5):1625−1648. doi: 10.1007/s10311-020-01040-7
    [9] LIU C J, WANG H M, KARIM A M, SUN J M, WANG Y. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chem Soc Rev,2014,43(22):7594−7623. doi: 10.1039/C3CS60414D
    [10] 尹海云, 李小华, 张蓉仙, 樊永胜, 俞宁, 蔡忆昔. HZSM-5在线提质生物油及催化剂失活机理分析[J]. 燃料化学学报,2014,42(9):1077−1086.

    YIN Hai-yun, LI Xiao hua, ZHANG Rong-xian, FAN Yong-sheng, YU Ning, CAI Yi-xi. HZSM-5 online enhancement of bio-oil and analysis of catalyst deactivation mechanism[J]. J Fuel Chem Technol,2014,42(9):1077−1086.
    [11] CHENG S L, ZHANG Z M, ZHANG D M, DENG Y. Microwave irradiation pyrolysis of rice straw in ionic liquid ([Emim]Br)[J]. Bioresources,2013,8(3):3994−4003.
    [12] ZHOU X W, MAYES H B, BROADBELT L J, NOLTE M W, SHANKS B H. Fast pyrolysis of glucose‐based carbohydrates with added NaCl part 1: Experiments and development of a mechanistic model[J]. AlChE J,2015,62(3):766−777.
    [13] LENG E W, WANG Y, GONG X, ZHANG B, ZHANG Y, XU M H. Effect of KCl and CaCl2 loading on the formation of reaction intermediates during cellulose fast pyrolysis[J]. Proc Combust Inst,2017,36(2):2263−2270. doi: 10.1016/j.proci.2016.06.167
    [14] OH S-J, CHOI G-G, KIM J-S. Fast pyrolysis of corn stover using ZnCl2: Effect of washing treatment on the furfural yield and solvent extraction of furfural[J]. Energy,2015,88:697−702. doi: 10.1016/j.energy.2015.05.101
    [15] LU Q, DONG C Q, ZHANG X M, TIAN H Y, YANG Y P, ZHU X F. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: Analytical Py-GC/MS study[J]. J Anal Appl Pyrolysis,2011,90(2):204−212. doi: 10.1016/j.jaap.2010.12.007
    [16] ASTM E871-82(2019), Standard Test Method for Moisture Analysis of Particulate Wood Fuels[S].
    [17] ASTM E1755-01(2007), Standard Test Method for Ash in Biomass[S].
    [18] ASTM E872-82(2006), Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels[S].
    [19] NY/T 3498—2019, 农业生物质原料成分测定--元素分析仪法[S].

    NY/T 3498—2019, Determination of the composition of agricultural biomass raw materials by Elemental analyzer method[S].
    [20] ZHANG Y, CUI H Y, YI W M, SONG F, ZHAO P P, WANG L H, CUI J Y. Highly effective decarboxylation of the carboxylic acids in fast pyrolysis oil of rice husk towards ketones using CaCO3 as a recyclable agent[J]. Biomass Bioenergy,2017,102:13−22. doi: 10.1016/j.biombioe.2017.04.004
    [21] RAZA M, ABU-JDAYIL B, AL-MARZOUQI A H, INAYAT A. Kinetic and thermodynamic analyses of date palm surface fibers pyrolysis using Coats-Redfern method[J]. Renew Energy,2022,183:67−77. doi: 10.1016/j.renene.2021.10.065
    [22] HU J, SHEN D K, WU S L, XIAO R. Insight into the effect of ZnCl2 on analytical pyrolysis behavior of cellulolytic enzyme corn stover lignin[J]. J Anal Appl Pyrolysis,2017,127:444−450. doi: 10.1016/j.jaap.2017.07.005
    [23] CHEN D Y, CEN K H, ZHUANG X Z, GAN Z Y, ZHOU J B, ZHANG Y M, ZHANG H. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil[J]. Combust Flame,2022,242:112142. doi: 10.1016/j.combustflame.2022.112142
    [24] CHAKAR F S, RAGAUSKAS A J. Review of current and future softwood kraft lignin process chemistry[J]. Ind Crops Prod,2004,20(2):131−141. doi: 10.1016/j.indcrop.2004.04.016
    [25] KUMAR P, BARRETT D M, DELWICHE M J, STROEVE P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production[J]. Ind Eng Chem Res,2009,48(8):3713−3729. doi: 10.1021/ie801542g
    [26] MA S W, ZHANG L Q, ZHU L, ZHU X F. Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation[J]. J Anal Appl Pyrolysis,2018,131:113−119. doi: 10.1016/j.jaap.2018.02.017
    [27] LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chem Rev,2015,115(22):12251−12285. doi: 10.1021/acs.chemrev.5b00195
    [28] ZHANG H Y, LIU X J, LU M Z, HU X Y, LU L G, TIAN X N, JI J B. Role of Bronsted acid in selective production of furfural in biomass pyrolysis[J]. Bioresour Technol,2014,169:800−803. doi: 10.1016/j.biortech.2014.07.053
    [29] LI Y, HU B, NAQVI S R, ZHANG Z X, LI K, LU Q. Selective preparation of 5-hydroxymethylfurfural by catalytic fast pyrolysis of cellulose over zirconium-tin mixed metal oxides[J]. J Anal Appl Pyrolysis,2021,155:105103. doi: 10.1016/j.jaap.2021.105103
    [30] QU G F, HE W W, CAI Y Y, HUANG X, NING P. Catalytic pyrolysis of cellulose in ionic liquid [bmim]OTf[J]. Carbohydr Polym,2016,148:390−396. doi: 10.1016/j.carbpol.2016.04.052
    [31] OH S-J, CHOI G-G, KIM J-S. Production of acetic acid-rich bio-oils from the fast pyrolysis of biomass and synthesis of calcium magnesium acetate deicer[J]. J Anal Appl Pyrolysis,2017,124:122−129. doi: 10.1016/j.jaap.2017.01.032
    [32] ESSANDOH M, KUNWAR B, PITTMAN C U, MOHAN D, MLSNA T. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar[J]. Chem Eng J,2015,265:219−227. doi: 10.1016/j.cej.2014.12.006
    [33] LI Z H, XING B, DING Y, LI Y C, WANG S R. A high-performance biochar produced from bamboo pyrolysis with in-situ nitrogen doping and activation for adsorption of phenol and methylene blue[J]. Chin J Chem Eng,2020,28(11):2872−2880. doi: 10.1016/j.cjche.2020.03.031
    [34] SINGH R, DUTTA R K, NAIK D V, RAY A, KANAUJIA P K. High surface area Eucalyptus wood biochar for the removal of phenol from petroleum refinery wastewater[J]. Environm Challenges,2021,5:100353. doi: 10.1016/j.envc.2021.100353
    [35] MOHAMMED N A S, ABU-ZURAYK R A, HAMADNEH I, AL-DUJAILI A H. Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies[J]. J Environ Manage,2018,226:377−385. doi: 10.1016/j.jenvman.2018.08.033
    [36] GAO W R, LIN Z X, CHEN H R, YAN S S, ZHU H N, ZHANG H, SUN H Q, ZHANG S, ZHANG S J, WU Y L. Roles of graphitization degree and surface functional groups of N-doped activated biochar for phenol adsorption[J]. J Anal Appl Pyrolysis,2022,167:105700. doi: 10.1016/j.jaap.2022.105700
    [37] LI Y C, LI Z H, XING B, LI H M, MA Z Q, ZHANG W B, REUBROYCHAROEN P, WANG S R. Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping[J]. J Anal Appl Pyrolysis,2021,155:105072. doi: 10.1016/j.jaap.2021.105072
    [38] FENG D D, GUO D W, ZHANG Y, SUN S Z, ZHAO Y J, SHANG Q, SUN H L, WU J Q, TAN H P. Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption[J]. Chem Eng J,2021,410:127707. doi: 10.1016/j.cej.2020.127707
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  66
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-18
  • 修回日期:  2023-01-18
  • 录用日期:  2023-02-10
  • 网络出版日期:  2023-03-08
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回