留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Conversion of the CO and CO2 mixture to alcohols and hydrocarbons by hydrogenation under the influence of the water-gas shift reaction, a thermodynamic consideration

GUO Shu-jia WANG Han QIN Zhang-feng LI Zhi-kai WANG Guo-fu DONG Mei FAN Wei-bin WANG Jian-guo

郭淑佳, 王晗, 秦张峰, 李志凯, 王国富, 董梅, 樊卫斌, 王建国. 水煤气变换反应作用下的CO和CO2混合物加氢转化制烃和醇——热力学平衡研究[J]. 燃料化学学报(中英文), 2023, 51(4): 482-491. doi: 10.1016/S1872-5813(23)60346-9
引用本文: 郭淑佳, 王晗, 秦张峰, 李志凯, 王国富, 董梅, 樊卫斌, 王建国. 水煤气变换反应作用下的CO和CO2混合物加氢转化制烃和醇——热力学平衡研究[J]. 燃料化学学报(中英文), 2023, 51(4): 482-491. doi: 10.1016/S1872-5813(23)60346-9
GUO Shu-jia, WANG Han, QIN Zhang-feng, LI Zhi-kai, WANG Guo-fu, DONG Mei, FAN Wei-bin, WANG Jian-guo. Conversion of the CO and CO2 mixture to alcohols and hydrocarbons by hydrogenation under the influence of the water-gas shift reaction, a thermodynamic consideration[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 482-491. doi: 10.1016/S1872-5813(23)60346-9
Citation: GUO Shu-jia, WANG Han, QIN Zhang-feng, LI Zhi-kai, WANG Guo-fu, DONG Mei, FAN Wei-bin, WANG Jian-guo. Conversion of the CO and CO2 mixture to alcohols and hydrocarbons by hydrogenation under the influence of the water-gas shift reaction, a thermodynamic consideration[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 482-491. doi: 10.1016/S1872-5813(23)60346-9

水煤气变换反应作用下的CO和CO2混合物加氢转化制烃和醇——热力学平衡研究

doi: 10.1016/S1872-5813(23)60346-9
详细信息
  • 中图分类号: O643.36

Conversion of the CO and CO2 mixture to alcohols and hydrocarbons by hydrogenation under the influence of the water-gas shift reaction, a thermodynamic consideration

Funds: The project was supported by the National Key Research and Development Program of China (2020YFB0606404) and National Natural Science Foundation of China (21991092, 22272195, U2003123, U1910203).
More Information
  • 摘要:

    受水煤气变换反应(或其逆反应)的干预,CO(或CO2)加氢反应制烃类或醇类化合物经常会遭遇较高的CO2(或CO)选择性,而目标产物烃和醇的选择性往往较低,这使得对相关反应过程的评估显得非常混乱。为此,本工作对水煤气变换反应作用下的CO、CO2及其混合物的加氢转化制烃(以乙烯为例)和醇(以甲醇为例)反应进行了详细的热力学研究。结果表明,对于CO(或CO2)加氢反应,水煤气变换(或逆水煤气变换)反应作为连接CO和CO2的连通器,虽然会给CO(或CO2)的平衡转化率带来很大的改变并生成大量的CO2(或CO),但其对目标醇和烃产物的碳基平衡收率影响相对较小。CO加氢反应的烃醇产物的碳基平衡收率比CO2加氢反应的高,而CO和CO2混合物加氢的烃醇产物的总碳基平衡收率位于两者之间。对于CO和CO2混合物加氢,尽管CO或CO2的平衡转化率随原料组成的不同有较大幅度的变化,但烃醇产物的总碳基平衡收率变化较为简单,即随着CO2/(CO + CO2)摩尔比的增大而线形降低。鉴于CO或CO2加氢过程的尾气均为CO和CO2混合物,用CO和CO2混合物加氢制烃醇或许更为有利;无论CO、CO2还是其混合物的加氢过程,都应以目标产物的碳基总收率作为评估指标。

    #Joint first authors
  • FIG. 2207.  FIG. 2207.

    FIG. 2207.  FIG. 2207.

    Figure  1  (a) Equilibrium yield of ethene and selectivity to CO2 for the hydrogenation of CO to ethene via the reaction of 2CO + 4H2 = C2H4 + 2H2O; (b) equilibrium yield of methanol and selectivity to CO for the hydrogenation of CO2 to methanol via the reaction of CO2 + 3H2 = CH3OH + H2O; and (c) equilibrium yield of ethene and selectivity to CO for the hydrogenation of CO2 to ethene via the reaction of 2CO2 + 6H2 = C2H4 + 4H2O. The first reaction has a H2/CO molar ratio of 2 in the initial reaction mixture of H2 and CO, whereas the later two reactions have a H2/CO2 molar ratio of 3 in the initial reaction mixture of H2 and CO2. The solid lines are for the individual CO or CO2 hydrogenation reactions alone, whereas the dashed lines are for those having the intervention from the WGS/RWGS reaction of CO + H2O = CO2 + H2

    Figure  2  Overall C-based equilibrium methanol yield, CO conversion, and CO2 conversion for the hydrogenation of the CO and CO2 mixture to methanol via the reactions of CO + 2H2 = CH3OH and CO2 + 3H2 = CH3OH + H2O, where the water-gas shift (WGS) reaction of CO + H2O = CO2 + H2 as a nonindependent reaction occurs inevitably; depending on the CO2/(CO + CO2) molar ratio (z), the initial reaction mixture has a H2/CO/CO2 molar ratio of (2 + z)/(1−z)/z. For the pure CO2 hydrogenation (z = 1), the equilibrium selectivity to CO was displayed instead of the equilibrium CO conversion

    Figure  3  Overall C-based equilibrium methanol yield, CO conversion, and CO2 conversion varied with the feed CO2/(CO + CO2) molar ratio (z) for the hydrogenation of the CO and CO2 mixture into methanol at 225 °C and different pressures (left) and at 5 MPa and different temperatures (right), via the reactions of CO + 2H2 = CH3OH and CO2 + 3H2 = CH3OH + H2O, where the water-gas shift (WGS) reaction of CO + H2O = CO2 + H2 as a nonindependent reaction occurs inevitably; depending on the CO2/(CO + CO2) molar ratio (z = 0–1), the initial reaction mixture has a H2/CO/CO2 molar ratio of (2 + z)/(1−z)/z

    Figure  4  Overall C-based equilibrium ethene yield, CO conversion, and CO2 conversion for the hydrogenation of the CO and CO2 mixture to ethene via the reactions of 2CO + 4H2 = C2H4 + 2H2O and 2CO2 + 6H2 = C2H4 + 4H2O, where the water-gas shift (WGS) reaction of CO + H2O = CO2 + H2 as a nonindependent reaction occurs inevitably; depending on the CO2/(CO + CO2) molar ratio (z), the initial reaction mixture has a H2/CO/CO2 molar ratio of (2 + z)/(1−z)/z. For the pure CO hydrogenation (z = 0), the equilibrium selectivity to CO2 was displayed instead of the equilibrium CO2 conversion, whereas for the pure CO2 hydrogenation (z = 1), the equilibrium selectivity to CO was displayed instead of the equilibrium CO conversion

    Figure  5  Overall C-based equilibrium ethene yield, CO conversion, and CO2 conversion varied with the feed CO2/(CO + CO2) molar ratio (z) for the hydrogenation of CO and CO2 mixture into ethene at 350 °C and different pressures (left) and at 3 MPa and different temperatures (right), via the reactions of 2CO + 4H2 = C2H4 + 2H2O and 2CO2 + 6H2 = C2H4 + 4H2O, where the water-gas shift (WGS) reaction of CO + H2O = CO2 + H2 as a nonindependent reaction occurs inevitably; depending on the CO2/(CO + CO2) molar ratio (z = 0–1), the initial reaction mixture has a H2/CO/CO2 molar ratio of (2 + z)/(1−z)/z

  • [1] ZHOU W, CHENG K, KANG J C, ZHOU C, SUBRAMANIAN V, ZHANG Q H, WANG Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev,2019,48(12):3193−3228. doi: 10.1039/C8CS00502H
    [2] ZHAO S Q, LI H W, WANG B, YANG X L, PENG Y H, DU H, ZHANG Y, HAN D Z, LI Z. Recent advances on syngas conversion targeting light olefins[J]. Fuel,2022,321:124124. doi: 10.1016/j.fuel.2022.124124
    [3] JIAO F, LI J J, PAN X L, XIAO J P, LI H B, MA H, WEI M M, PAN Y, ZHOU Z Y, LI M R, MIAO S, LI J, ZHU Y F, XIAO D, HE T, YANG J H, QI F, FU Q, BAO X H. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065−1068. doi: 10.1126/science.aaf1835
    [4] WANG H, FAN S, WANG S, DONG M, QIN Z F, FAN W B, WANG J G. Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products[J]. J Fuel Chem Technol,2021,49(11):1609−1619. doi: 10.1016/S1872-5813(21)60122-6
    [5] BUSHUYEV O S, DE LUNA P, DINH C T, TAO L, SAUR G, VAN DE LAGEMAAT J, KELLEY S O, SARGENT E H. What should we make with CO2 and how can we make it?[J]. Joule,2018,2(5):825−832. doi: 10.1016/j.joule.2017.09.003
    [6] POROSOFF M D, YAN B, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy Environ Sci,2016,9(1):62−73. doi: 10.1039/C5EE02657A
    [7] ZHONG J W, YANG X F, WU Z L, LIANG B L, HUANG Y Q, ZHANG T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chem Soc Rev,2020,49(5):1385−1413. doi: 10.1039/C9CS00614A
    [8] FAYISA B A, YANG Y, ZHEN Z, WANG M Y, LV J, WANG Y, MA X. Engineered chemical utilization of CO2 to methanol via direct and indirect hydrogenation pathways: A review[J]. Ind Eng Chem Res,2022,61(29):10319−10335. doi: 10.1021/acs.iecr.2c00402
    [9] ALVAREZ A, BANSODE A, URAKAWA A, BAVYKINA A V, WEZENDONK T A, MAKKEE M, GASCON J, KAPTEIJN F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chem Rev,2017,117(14):9804−9838. doi: 10.1021/acs.chemrev.6b00816
    [10] XIAO F S, AZEVEDO D, NICHOLAS C P, PETIT C. Preface for special issue on engineered methodologies for CO2 utilization[J]. Ind Eng Chem Res,2022,61(29):10295−10297. doi: 10.1021/acs.iecr.2c02297
    [11] RA E C, KIM K Y, KIM E H, LEE H, AN K, LEE J S. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives[J]. ACS Catal,2020,10(19):11318−11345. doi: 10.1021/acscatal.0c02930
    [12] PORTILLO A, ATEKA A, EREÑA J, BILBAO J, AGUAYO A T. Role of Zr loading into In2O3 catalysts for the direct conversion of CO2/CO mixtures into light olefins[J]. J Environ Manage,2022,316:115329. doi: 10.1016/j.jenvman.2022.115329
    [13] VO C H, PÉREZ-RAMÍREZ J, FAROOQ S, KARIMI I A. Prospects of producing higher alcohols from carbon dioxide: A process system engineering perspective[J]. ACS Sustainable Chem Eng,2022,10(36):11875−11884. doi: 10.1021/acssuschemeng.2c02810
    [14] AHMAD K, UPADHYAYULA S. Greenhouse gas CO2 hydrogenation to fuels: A thermodynamic analysis[J]. Environ Prog Sustainable Energy,2019,38(1):98−111. doi: 10.1002/ep.13028
    [15] GUO S J, WANG H, QIN Z F, LI Z K, WANG G F, DONG M, FAN W B, WANG J G. Feasibility, limit, and suitable reaction conditions for the production of alcohols and hydrocarbons from CO and CO2 through hydrogenation, a thermodynamic consideration[J]. Ind Eng Chem Res,2022,61(46):17027−17038. doi: 10.1021/acs.iecr.2c02898
    [16] LIU J G, QIN Z F, WANG J G. Methanol synthesis under supercritical conditions: calculations of equilibrium conversions by using the Soave-Redlich-Kwong equation of state[J]. Ind Eng Chem Res,2001,40(17):3801−3805. doi: 10.1021/ie0100479
    [17] QIN Z F, LIU J G, WANG J G. Solvent effects on higher alcohols synthesis under supercritical conditions: A thermodynamic consideration[J]. Fuel Process Technol,2004,85(8/10):1175−1192.
    [18] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chem Eng Sci,1972,27(6):1197−1203. doi: 10.1016/0009-2509(72)80096-4
    [19] GRAAF G H, SIJTSEMA P J J M, STAMHUIS E J, JOOSTEN G E H. Chemical equilibria in methanol synthesis[J]. Chem Eng Sci,1986,41(11):2883−2890. doi: 10.1016/0009-2509(86)80019-7
    [20] ZHANG W Y, WANG S, GUO S J, QIN Z F, DONG M, FAN W B, WANG J G. GamCrOx/H-SAPO-34(F), a highly efficient bifunctional catalyst for the direct conversion of CO2 into ethene and propene[J]. Fuel,2022,329:125475. doi: 10.1016/j.fuel.2022.125475
  • 加载中
图(6)
计量
  • 文章访问数:  1759
  • HTML全文浏览量:  129
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-16
  • 修回日期:  2023-03-05
  • 录用日期:  2023-03-06
  • 网络出版日期:  2023-03-09
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回