留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨硼烷合成、表征及金属纳米催化剂水解制氢研究进展

邹爱华 林路贺 周浪 康志兵 曹黎华 韩庆东

邹爱华, 林路贺, 周浪, 康志兵, 曹黎华, 韩庆东. 氨硼烷合成、表征及金属纳米催化剂水解制氢研究进展[J]. 燃料化学学报(中英文), 2023, 51(7): 909-920. doi: 10.1016/S1872-5813(23)60347-0
引用本文: 邹爱华, 林路贺, 周浪, 康志兵, 曹黎华, 韩庆东. 氨硼烷合成、表征及金属纳米催化剂水解制氢研究进展[J]. 燃料化学学报(中英文), 2023, 51(7): 909-920. doi: 10.1016/S1872-5813(23)60347-0
ZOU Ai-hua, LIN Lu-he, ZHOU Lang, KANG Zhi-bing, CAO Li-hua, HAN Qing-dong. Research progress on the synthesis and characterization of ammonia borane and metal nanocatalysts for hydrogen production the hydrolysis of ammonia borane[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 909-920. doi: 10.1016/S1872-5813(23)60347-0
Citation: ZOU Ai-hua, LIN Lu-he, ZHOU Lang, KANG Zhi-bing, CAO Li-hua, HAN Qing-dong. Research progress on the synthesis and characterization of ammonia borane and metal nanocatalysts for hydrogen production the hydrolysis of ammonia borane[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 909-920. doi: 10.1016/S1872-5813(23)60347-0

氨硼烷合成、表征及金属纳米催化剂水解制氢研究进展

doi: 10.1016/S1872-5813(23)60347-0
基金项目: 江西省博士后择优项目(2017KY45),博士启动金(EA201801216)和江西省教育厅基金(GJJ2204306)资助
详细信息
    通讯作者:

    E-mail: hqd-my@163.com

  • 中图分类号: O643.36

Research progress on the synthesis and characterization of ammonia borane and metal nanocatalysts for hydrogen production the hydrolysis of ammonia borane

Funds: The project was supported by Doctoral Program of Jiangxi Province(2017KY45), PhD Research Startup Foundation (EA201801216) and Jiangxi Provincial Department of Education Fund (GJJ2204306)
  • 摘要: 储氢密度高(19.6%)的氨硼烷(AB)是一种很有前途的化学储氢材料,室温下通过催化水解可释放3 mol当量的氢气。氨硼烷在水中放氢速率缓慢,需要开发高活性金属纳米催化剂来加速其水解制氢过程。本研究从氨硼烷结构中特殊的双氢键入手, 总结了氨硼烷的合成、表征方法以及水解催化制氢的机理。综述了调节催化剂的物质的量比、改变纳米粒子结构以及增大催化剂比表面积对氨硼烷释氢性能的影响,并对氨硼烷的研究前景进行了展望。
  • FIG. 2464.  FIG. 2464.

    FIG. 2464.  FIG. 2464.

    图  1  负载型催化剂催化氨硼烷水解反应机理示意图[38]

    Figure  1  Schematic diagram of the mechanism of supported catalysts for the hydrolysis of ammonia borane[38] (with permission from J Power Sources)

    图  2  (a) Ru/γ-Al2O3, (b) Rh/γ-Al2O3, (c) Pd/γ-Al2O3, (d) Pt/γ-Al2O3, (e) Pt/C, (f) Pt/SiO2的透射电镜(TEM)照片; (g) Ru/γ-Al2O3, Rh/γ-Al2O3, Rh/γ-Al2O3; (h) Pd/γ-Al2O3, Au/γ-Al2O3; (i) Pt/γ-Al2O3, Pt/C, Pt/SiO2催化AB(1%, 10 mL)水解放氢量(催化剂/AB=0.018)[52]

    Figure  2  TEM micrographs for: (a) Ru/γ-Al2O3, (b) Rh/γ-Al2O3, (c) Pd/γ-Al2O3, (d) Pt/γ-Al2O3, (e) Pt/C, (f) Pt/SiO2; hydrogen generation from aq. NH3BH3(1%, 10 mL) in the presence of: (g) Ru/γ-Al2O3, Rh/γ-Al2O3, Rh/γ-Al2O3; (h) Pd/γ-Al2O3, Au/γ-Al2O3; (i) Pt/γ-Al2O3, Pt/C, Pt/SiO2 (metal/ AB = 0.018)[52](with permission from J Power Sources)

    图  3  CoRh@PVP合金纳米颗粒形成的还原途径示意图[81]

    Figure  3  Schematic diagram of reduction pathway for the formation of CoRh@PVP alloy nanoparticles[81] (with permission from Renewable Energy)

    图  4  (a) Co-CeOx/graphene催化剂在298 K下催化氢硼烷水溶液(200 mmol/L, 5 mL)释放氢的生产率与反应时间的关系

    Figure  4  (a) Hydrogen productivity vs. reaction time for hydrogen release from an aqueous ammonia borane solution (200 mmol/L, 5 mL) catalyzed by the Co-CeOx/graphene nanocatalyst at 298 K(Co/AB=0.05, Ce=45%); the inset shows reaction time for the hydrolytic dehydrogenation of AB catalyzed by Co-CeOx/graphene with different molar contents of Ce; (b) Hydrogen generation from hydrolysis of ammonia borane (200 mmol/L, 5 mL) catalyzed by Co-ReOx/graphene (Re = Ce, La, Tb, Er, Dy and Yb, 45% of Re) under ambient atmosphere at room temperature (Co/AB = 0.05) [94]

    表  1  合金催化剂对AB水解制氢的催化活性

    Table  1  Catalytic activity of alloy catalysts for hydrogen production from AB hydrolysis

    Catalystt/℃TOF/min−1Ea/ (kJ·mol−1)Ref.
    Pt58Ni33Au925496[40]
    Ni0.19Cu0.81252.7033.7[41]
    Co0.52Cu0.48253.4033.3[41]
    Co35Pd652511.6927.5[42]
    PdPt2551.90[43]
    Pt0.65Ni0.352544.3039.00[44]
    CoCuRu2514336.50[45]
    PtTi2551.4039.40[46]
    PtCu25102.5036.50[47]
    NiMo2527.30[48]
    Pt2.5Cu14.5Al8325108.0040.50[49]
    下载: 导出CSV

    表  2  核壳型催化剂用于AB水解脱氢

    Table  2  Core-shell catalysts for AB hydrolysis and dehydrogenation

    Catalystt/℃TOF/min−1Ea/ (kJ·mol−1)Ref.
    Cu0.5Co0.5@SiO2254.2624[66]
    Cu0.3Co0.7@MIL-101RT19.6[67]
    Co@C−N@SiO2-800258.436.1[68]
    Ni3FeN@SiO22514.17[69]
    NiPt@ZIF-8 NPs2060023.3[70]
    Ag@Co/graphene25102.420.03[71]
    Co@N-C-700255.631[72]
    CuPd0.01@ZIF-67@ZIF-82530.1538.78[73]
    Cu6Fe0.8Co3.2@MIL-1012523.337.1[74]
    Cu0.3@Cu0.7CoOx@GO2544.635.4[75]
    下载: 导出CSV

    表  3  负载型催化剂用于AB水解脱氢

    Table  3  Supported catalysts for AB hydrolysis and dehydrogenation

    Catalystt/℃TOF/min−1Ea /(kJ·mol−1)Ref.
    Rh/CNT2570632[83]
    Rh/graphene2532519.7[84]
    Ru/SBA-152531634.8[85]
    Cu0.2Ni0.8/MCM-412510.73.8[86]
    NiAgPd/C2093.8038.36[87]
    Co/MIL-101-1-U2551.431.3[88]
    Cu0.64Ni0.36-TiO2(B) NTs2515.936.14[89]
    CoNi/RGO2519.5439.89[90]
    CuCo/Graphene209.81[91]
    NiMo/graphene2566.721.8[12]
    Cu0.4Co0.6/BNNFs258.4221.8[92]
    下载: 导出CSV
  • [1] ZHAO Y F, KONG W X, JIN Z L, FU Y, WANG W C, ZHANG Y T, LIU J D ZHANG B. Storing solar energy within Ag-Paraffin@Halloysite microspheres as a novel self-heating catalyst[J]. Appl Energy,2018,222:180−188. doi: 10.1016/j.apenergy.2018.04.013
    [2] DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen production for energy: An overview[J]. Int J Hydrogen Energy,2020,45(7):3847−3869. doi: 10.1016/j.ijhydene.2019.12.059
    [3] MØLLER K T, JENSEN T R, AKIBA E, LI H W. Hydrogen - A sustainable energy carrier[J]. Prog Nat Sci-Mater,2017,27(1):34−40. doi: 10.1016/j.pnsc.2016.12.014
    [4] HSU S H, MIAO J W, ZHANG L P, GAO J J, WANG H M, TAO H B, HUNG S F, TAO H, ANTHONY V, QIAO S Z, LIU B. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency[J]. Adv Mater,2018,30(18):1707261.1−11707261.8.
    [5] YAO Q L, YANG K K, NIE W D, LI Y X, LU Z H. Highly efficient hydrogen generation from hydrazine borane via a MoOx-promoted NiPd nanocatalyst[J]. Renewable Energy,2020,147:2024−2031. doi: 10.1016/j.renene.2019.09.144
    [6] ROSSIN A, PERUZZINI M. Ammonia-borane and amine-borane dehydrogenation mediated by complex metal hydrides[J]. Chem Rev,2016,116(15):8848−8872. doi: 10.1021/acs.chemrev.6b00043
    [7] YAO Q L, YANG K, HONG X L, CHEN X S, LU Z H. Base-promoted hydrolytic dehydrogenation of ammonia borane catalyzed by noble-metal-free nanoparticles[J]. Catal Sci Technol,2018,8(3):870−877. doi: 10.1039/C7CY02365K
    [8] UZUNDURUKAN A, DEVRIM Y. Carbon nanotube-graphene hybrid supported platinum as an effective catalyst for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2019,44(49):26773−26782. doi: 10.1016/j.ijhydene.2019.08.153
    [9] MEN Y N, SU J, WANG X L, CAI P, CHENG G Z, LUO W. NiPt nanoparticles supported on CeO2 nanospheres for efficient catalytic hydrogen generation from alkaline solution of hydrazine[J]. Chin Chem Lett,2019,30(3):634−637. doi: 10.1016/j.cclet.2018.11.010
    [10] HE L, LIANG B L, HUANG Y Q, ZHANG T. Design strategies of highly selective nickel catalysts for H2 production via hydrous hydrazine decomposition: A review[J]. Natl Sci Rev,2018,5(3):356−364. doi: 10.1093/nsr/nwx123
    [11] FENG Y F, WANG H Z, CHEN X D, LV F, LI Y Z, ZHU Y M, XU C J, ZHANG X B, LIU H, LI H. Simple synthesis of Cu2O-CoO nanoplates with enhanced catalytic activity for hydrogen production from ammonia borane hydrolysis[J]. Int J Hydrogen Energy,2020,45(35):17164−17173. doi: 10.1016/j.ijhydene.2020.04.257
    [12] YAO Q L, LU Z H, HUANG W, CHEN X S, ZHU J. High Pt-like activity of the Ni-Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. J Mater Chem A,2016,4(22):8579−8583. doi: 10.1039/C6TA02004F
    [13] AKBAYRAK S, OZKAR S. Ammonia borane as hydrogen storage materials[J]. Int J Hydrogen Energy,2018,43(40):18592−18606.
    [14] HELDEBRANT D J, KARKAMKAR A, HESS N J, BOWDEN M, RASSAT S, ZHENG F, RAPPE, K, AUTREY T. The effects of chemical additives on the induction phase in solid-state thermal decomposition of ammonia borane[J]. Chem Mater,2008,20(16):5332−5336. doi: 10.1021/cm801253u
    [15] CHANDRA M, XU Q. A high-performance hydrogen generation system: transition metal-catalyzed dissociation and hydrolysis of ammoniaeborane[J]. J Power Sources,2006,156(2):190−194. doi: 10.1016/j.jpowsour.2005.05.043
    [16] BLUHM M E, BRADLEY M G, BUTTERICK R, KUSARI U, SNEDDON L G. Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids[J]. J Am Chem Soc,2006,128(24):7748−7749. doi: 10.1021/ja062085v
    [17] SHORE S G, PARRY R W. The crystalline compound ammonia-borane, H3NBH3[J]. J Am Chem Soc,1955,77(22):6084−6085. doi: 10.1021/ja01627a103
    [18] RAMACHANDRAN P V, MISTRY H, KULKARNI A S, GAGRE P D. Ammonia-mediated, large-scale synthesis of ammonia borane[J]. Dalton Trans,2014,43(44):16580−16583. doi: 10.1039/C4DT02467B
    [19] RAMACHANDRAN P V, GAGARE P D. Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration[J]. Inorg Chem,2007,46(19):7810−7817. doi: 10.1021/ic700772a
    [20] HELDEBRANT D J, KARKAMKAR A, LINEHAN J C, AUTREY T. Synthesis of ammonia borane for hydrogen storage applications[J]. Energy Environ Sci,2008,1(1):156−160. doi: 10.1039/b808865a
    [21] 邹少爽, 陶占良, 陈军. 氨基络合物制备氨硼烷及放氢性能研究[J]. 化学学报,2011,69(18):2117−2122.

    ZOU Shao-shuang, TAO Zhan-liang, CHEN Jun. Study on preparation and dehydrogenation of ammonia borane by amino complex[J]. Acta Chim Sin,2011,69(18):2117−2122.
    [22] SHORE S G, PARRY R W. Chemical evidence for the structure of the “Diammoniate of diborane. ” II. The preparation of ammonia-borane[J]. J Am Chem Soc,1958,80(1):8−12. doi: 10.1021/ja01534a003
    [23] SCHLESINGER H I, BURG A B. Hydrides of boron. VIII. the structure of the diammoniate of diborane and its relation to the structure of diborane[J]. J Am Chem Soc,1938,60(2):290−299. doi: 10.1021/ja01269a020
    [24] CHEN X N, BAO X G, ZHAO J C, SHORE S G. Experimental and computational study of the formation mechanism of the diammoniate of diborane: The role of dihydrogen bonds[J]. J Am Chem Soc,2011,133(36):14172−14175. doi: 10.1021/ja203648w
    [25] CHEN X N, BAO X G, BILLET B, SHORE S G, ZHAO J C. Large-scale and facile preparation of pure ammonia borane through displacement reactions[J]. Chem-Eur J,2012,18(38):11994−11999. doi: 10.1002/chem.201201342
    [26] MAYER E. Conversion of dihydridodiammineboron(III) borohydride to ammonia-borane without hydrogen evolution[J]. Inorg Chem,1973,12(8):1954−1955. doi: 10.1021/ic50126a060
    [27] DEMIRCI U B. Ammonia borane, a material with exceptional properties for chemical hydrogen storage[J]. Int J Hydrogen Energy,2017,42(15):9978−10013. doi: 10.1016/j.ijhydene.2017.01.154
    [28] NAJIBA S, CHEN J H, DROZD V, DURGIN A, SUN Y Z. Tetragonal to orthorhombic phase transition of ammonia borane at low temperature and high pressure[J]. Appl Phys Lett,2012,111(11):112618.
    [29] KLOOSTER W T, KOETZLE T F, SIEGBAHN P E M, RICHARDSON T B, CRABTREE R. Study of the N−H···H−B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction[J]. J Am Chem Soc,1999,121(27):6337−6343. doi: 10.1021/ja9825332
    [30] DESIRAJU G R. DIHYDROGEN BONDS. Principles, experiments, and applications. By Vladimir I. Bakhmutov.[J]. Angew Chem Int Ed,2008,47(41):7794−7794. doi: 10.1002/anie.200885622
    [31] CHEN X N, ZHAO J C,SHORE S G. The roles of dihydrogen bonds in amine borane chemistry[J]. Accounts Chem Res,2013,46(11):2666−2675.
    [32] STAUBITZ A, ROBERTSON A P M, MANNERS I. Chemlnform abstract: Ammonia-borane and related compounds as dihydrogen sources[J]. Chem. Rev,2010,110(7):4079−4124.
    [33] HOON C F, REYNHARDT E C. Molecular dynamics and structures of amine boranes of the type R3N·BH3: I. X-ray investigation of H3N·BH3 at 295K and 110K[J]. J Phys C: Solid State Phys,1983,16(32):6129−6136. doi: 10.1088/0022-3719/16/32/007
    [34] HESS N J, SCHENTER G K, HARTMAN M R, DAEMEN L L, PROFFEN T, KATHMANN S M, MUNDY C J, HARTL M, HELDEBRANT D J, STOWE A C, AUTREY T. Neutron powder diffraction and molecular simulation study of the structural evolution of ammonia borane from 15 to 340 K[J]. J Phys Chem A,2009,113(19):5723−5735. doi: 10.1021/jp900839c
    [35] ANG L, YANG S. In situ high-pressure and low-temperature study of ammonia borane by Raman spectroscopy[J]. J Phys Chem C,2012,116(3):2123−2131. doi: 10.1021/jp205962g
    [36] NAJIBA S, CHEN J H, DROZD V, DURYGIN A, SUN Y Z. Ammonia borane at low temperature down to 90 K and high pressure up to 15 GPa[J]. Int J Hydrogen Energ,2013,38(11):4628−4635. doi: 10.1016/j.ijhydene.2012.11.041
    [37] GE Y Z, YE W Y, SHAH Z H, LIN X J, LU R W, ZHANG S F. PtNi/NiO clusters coated by hollow silica: Novel design for highly efficient hydrogen production from ammonia-borane[J]. ACS Appl Mater Inter,2017,9(4):3749−3756. doi: 10.1021/acsami.6b15020
    [38] XU Q, CHANDRA M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. J Power Sources,2006,163(1):364−370. doi: 10.1016/j.jpowsour.2006.09.043
    [39] PENG C Y, KANG L, CAO S, CHEN Y, LIN Z S, FU W F. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane[J]. Angew Chem Int Ed,2015,54(52):15725−15729. doi: 10.1002/anie.201508113
    [40] KANG J X, CHEN T W, ZHANG D F, GUO L. PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation[J]. Nano Energy,2016,23:145−152. doi: 10.1016/j.nanoen.2016.03.017
    [41] SANG W L, WANG C Y, ZHANG X H, YU X F, YU C, ZHAO J L, WANG X X, YANG X J, LI L L. Dendritic Co0.52Cu0.48 and Ni0.19Cu0.81 alloys as hydrogen generation catalysts via hydrolysis of ammonia borane[J]. Int J Hydrogen Energ,2017,42(52):30691−30703. doi: 10.1016/j.ijhydene.2017.10.130
    [42] SUN D H, MAZUMDER V, ÖNDER METIN, SUN S H. Catalytic hydrolysis of ammonia borane via cobalt palladium nanocles[J]. ACS Nano, 2011, 5(8): 6458-6464.
    [43] ZHANG Z, JIANG Y Z, CHI M Q, YANG Z Z, WANG C, LU X F. Electrospun polyacrylonitrile nanofibers supported alloyed Pd–Pt nanoparticles as recyclable catalysts for hydrogen generation from the hydrolysis of ammonia borane[J]. RSC Adv,2015,5(114):94456−94461. doi: 10.1039/C5RA18698F
    [44] YANG X J, CHENG F Y, LIANG J, TAO Z L, CHEN J. PtxNi1-x nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2009,34(21):8785−8791. doi: 10.1016/j.ijhydene.2009.08.075
    [45] COŞKUNER FILIZ B, KANTÜRK FIGEN A, PIŞKIN S. The remarkable role of metal promoters on the catalytic activity of Co-Cu based nanoparticles for boosting hydrogen evolution: Ammonia borane hydrolysis[J]. Appl Catal B: Environ,2018,238:365−380. doi: 10.1016/j.apcatb.2018.07.031
    [46] ZHOU Q X, XU C X. Stratified nanoporous PtTi alloys for hydrolysis of ammonia borane[J]. J Colloid Interf SCI,2017,496:235−242. doi: 10.1016/j.jcis.2017.02.030
    [47] GAO M Y, YANG W W, YU Y S. Monodisperse PtCu alloy nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2018,43(31):14293−14300. doi: 10.1016/j.ijhydene.2018.05.158
    [48] YANG K K, YAO Q L, HUANG W, CHEN X S, LU Z H. Enhanced catalytic activity of NiM (M=Cr, Mo, W) nanoparticles for hydrogen evolution from ammonia borane and hydrazine borane[J]. Int J Hydrogen Energy,2017,42(10):6840−6850. doi: 10.1016/j.ijhydene.2016.12.029
    [49] ZHOU Q X, QI L, YANG H X, XU C X. Hierarchical nanoporous platinum-copper alloy nanoflowers as highly active catalysts for the hydrolytic dehydrogenation of ammonia borane[J]. J Colloid Interf Sci,2018,513:258−265. doi: 10.1016/j.jcis.2017.11.040
    [50] METIN Ö, DUMAN S, DINÇ M, ÖZKAR S. Oleylamine-stabilized palladium(0) nanoclusters as highly active heterogeneous catalyst for the dehydrogenation of ammonia borane[J]. J Phys Chem C,2012,115(21):10736−10743.
    [51] AYVALI T, ZAHMAKIRAN M, ÖZKAR S. One-pot synthesis of colloidally robust rhodium(0) nanoparticles and their catalytic activity in the dehydrogenation of ammonia-borane for chemical hydrogen storage[J]. Dalton Trans,2011,40(14):3584−3591. doi: 10.1039/c0dt01633k
    [52] CHANDRA M, XU Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J]. J Power Sources,2007,168(1):135−142. doi: 10.1016/j.jpowsour.2007.03.015
    [53] YAO C F, ZHUANG L, CAO Y L, AI X P, YANG H X. Hydrogen release from hydrolysis of borazane on Pt- and Ni-based alloy catalysts[J]. Int J Hydrogen Energy,2008,33(10):2462−2467. doi: 10.1016/j.ijhydene.2008.02.028
    [54] 王帅, 张朵, 马艳芸, 章辉, 高婧, 聂宇婷, 孙旭辉. Pt-M(M=Fe, Co, Ni)双金属纳米粒子及其在氨硼烷水解中的催化性能[C]// 中国化学会. 中国化学会第29届学术年会摘要集——第34分会: 纳米催化. 2014.

    WANG Shuai, ZHANG Duo, MA Yan-yun, ZHANG Hui, GAO Jing, NIE Yu-ting, SUN Xu-hui. Pt-M(M=Fe, Co, Ni) bimetallic nanoparticles and their catalytic performance in the hydrolysis of ammonia borane[C]// Chinese Chemical Society. Abstracts of the 29th Annual Conference of the Chinese Chemical Society-Session 34: Nano catalysis. 2014.
    [55] CHEN G Z, DESINAN S, ROSEI R, ROSERI F, MA D. Synthesis of Ni-Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane[J]. Chem Eur J,2012,18(25):7925−7930. doi: 10.1002/chem.201200292
    [56] YAN J M, ZHANG X B, HAN S, SHIOYAMA H, XU Q. Magnetically recyclable Fe-Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere[J]. J Power Sources,2009,194(1):478−481. doi: 10.1016/j.jpowsour.2009.04.023
    [57] AKDIM O, DEMIRCI U B, MIELE P. A bottom-up approach to prepare cobalt-based bimetallic supported catalysts for hydrolysis of ammonia borane[J]. Int J Hydrog Energy,2013,38(14):5627−5637. doi: 10.1016/j.ijhydene.2013.02.110
    [58] LI C M, ZHOU J Y, GAO W, ZHAO J W, LIU J, ZHAO Y F, WEI M, EVANS D, DUAN X. Binary Cu-Co catalysts derived from hydrotalcites with excellent activity and recyclability towards NH3BH3 dehydrogenation[J]. J Mater Chem A,2013,1(17):5370−5376. doi: 10.1039/c3ta10424a
    [59] WANG Y T, PAN L, CHEN Y X, SHEN G Q, WANG L, ZHANG X G, ZOU J J. Mo-doped Ni-based catalyst for remarkably enhancing catalytic hydrogen evolution of hydrogen-storage materials[J]. Int J Hydrog Energy,2020,45(31):15560−15570. doi: 10.1016/j.ijhydene.2020.04.061
    [60] LU Z H, LI J P, ZHU A L, YAO Q L, HUANG W, ZHOU R Y, ZHOU R F, CHEN X S. Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage[J]. Int J Hydrog Energy,2013,38(13):5330−5337. doi: 10.1016/j.ijhydene.2013.02.076
    [61] 林路贺, 邹爱华, 康志兵, 郭浩, 王杰. Co-Ni-Mo三元纳米材料的合成及其催化氨硼烷制氢研究[J]. 材料导报,2023,(16):1−14.

    LIN Lu-he, ZOU Ai-hua, KANG Zhi-bing, GUO Hao, WANG Jie. Synthesis of Co-Ni-Mo ternary nanomaterials and their catalytic study on hydrogen production from ammonia borane[J]. Mater Reports,2023,(16):1−14.
    [62] GUAN S Y, AN L L, ASHRAF S, ZHANG L N, LIU B Z, FAN Y P, LI B J. Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation[J]. Appl Cataly B: Environ,2020,269(15):118775−118785.
    [63] JIA H, LIU S, ZHENG G P, ZHEGN X C, WANG X Y, LIU P. Collagen-graphene oxide magnetic hybrids anchoring Pd(0) catalysts for efficient H2 generation from ammonia borane[J]. Int J Hydrog Energy,2019,44(49):27022−27029. doi: 10.1016/j.ijhydene.2019.08.159
    [64] TONBUL Y, AKBAYRAK S, OZKAR S. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane[J]. J Colloid Interface Sci,2019,553(1):581−587.
    [65] WU H, WU M, WANG B Y, YONG X, LIU Y S, LI B J, LIU S Y. Interface electron collaborative migration of Co-Co3O4/carbon dots: Boosting the hydrolytic dehydrogenation of ammonia borane[J]. J Energy Chem,2020,48(9):43−53.
    [66] YAO Q L, LU Z H, WANG Y Q, CHEN X S, FENG G. Synergetic catalysis of non-noble bimetallic Cu-Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane[J]. J Phys Chem C,2015,119(25):14167−14174. doi: 10.1021/acs.jpcc.5b02403
    [67] LI J, ZHU Q L, XU Q. Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal-organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation[J]. Catal Sci Technol,2015,5(1):525−530. doi: 10.1039/C4CY01049C
    [68] CHEN M L, XIONG R, CUI X, WANG Q, LIU X W. SiO2-encompassed Co@N-doped porous carbon assemblies as recyclable catalysts for efficient hydrolysis of ammonia borane[J]. Langmuir,2019,35:671−677. doi: 10.1021/acs.langmuir.8b03921
    [69] ZHANG X, ZHAO Y F, JIA X D, ZHAO Y X, SHANG L, WANG Q, WATERHOUSE I N, WU L Z, TUNG C H, ZHANG T R. Silica-protected ultrathin Ni3FeN nanocatalyst for the efficient hydrolytic dehydrogenation of NH3BH3[J]. Adv Energy Mater,2018,8(12):1702780. doi: 10.1002/aenm.201702780
    [70] FU F Y, WANG C L, WANG Q, MARTINGEZ-VILLACORTA A, ESCOBAR A, CHONG H B, WANG X, MOYA S, SALMON L, FOUQUET E, RUIZ J, ASTRUC D. Highly selective and sharp volcano-type synergistic Ni2Pt@ZIF-8-catalyzed hydrogen evolution from ammonia borane hydrolysis[J]. J Am Chem Soc,2018,140(31):10034−10042. doi: 10.1021/jacs.8b06511
    [71] YANG L, LUO W, CHENG G Z. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane[J]. ACS Appl Mater Inter,2013,5(16):8231−8240. doi: 10.1021/am402373p
    [72] WANG H X, ZHAO Y R, CHENG F Y, TAO Z L, CHEN J. Cobalt nanoparticles embedded in porous N-doped carbon as long-life catalysts for hydrolysis of ammonia borane[J]. Catal Sci Technol,2016,6(10):3443−3448. doi: 10.1039/C5CY01756D
    [73] ZHOU Y H, CAO X Y, NING J Z, JI C C, CHENG Y, GU J. Pd-doped Cu nanoparticles confined by ZIF-67@ZIF-8 for efficient dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2020,45(56):31440−31451. doi: 10.1016/j.ijhydene.2020.08.141
    [74] LI Y, LI S F. Low-cost CuFeCo@MIL-101 as an efficient catalyst for catalytic hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2019,45(17):10433−10441.
    [75] LI J L, REN X Y, LV H, WANG Y Y, LI Y F, LIU B. Highly efficient hydrogen production from hydrolysis of ammonia borane over nanostructured Cu@CuCoOx supported on graphene oxide[J]. J Hazard Mater,2020,391:122199. doi: 10.1016/j.jhazmat.2020.122199
    [76] 王海霞, 周丽敏, 陶占良, 陈军. Cu@Co纳米颗粒合成及催化氨硼烷水解放氢性能[J]. 功能材料与器件学报,2015,21(4):7−12.

    WANG Hai-xia, ZHOU Li-min, TAO Zhan-liang, CHEN Jun. Synthesis of Cu@Co nanoparticles and catalytic performance of hydrogen release from ammonia borane[J]. J Funct Mater Dev,2015,21(4):7−12.
    [77] ZHANG J, LI H B, ZHANG H, ZHU Y M, MI G. Porously hierarchical Cu@Ni cubic-cage microstructure: Very active and durable catalyst for hydrolytically liberating H2 gas from ammonia borane[J]. Renewable Energy,2016,99:1038−1045. doi: 10.1016/j.renene.2016.07.066
    [78] YAO Q L, SHI W M, FENG G, LU Z H, ZHANG X L, TAO D J, KONG D J, CHEN X S. Ultrafine Ru nanoparticles embedded in SiO2 nanospheres: Highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. J Power Sources,2014,257:293−299. doi: 10.1016/j.jpowsour.2014.01.122
    [79] YAO Q L, LU Z H, ZHANG Z J, CHEN X S, LAN Y Q. One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane[J]. Sci Rep-UK,2014,4(1):7597. doi: 10.1038/srep07597
    [80] 卢章辉, 徐强. Au-Co@SiO2核壳纳米球催化水解氨硼烷制氢[C]// 中国化学会. 中国化学会第28届学术年会第8分会场摘要集. 中国化学会: 中国化学会, 2012: 662.

    (LU Zhang-hui, XU Qiang. Au-Co@SiO2 core-shell nanospheres catalyzed hydrolysis of ammonia borane to produce hydrogen[C]// Chinese Chemical Society. Abstracts of the 8th branch of the 28th Annual Conference of the Chinese Chemical Society. Chinese Chemical Society: Chinese Chemical Society, 2012: 662).
    [81] RAKAP M. Synthesis and characterization of bimetallic cobalt-rhodium nanoclusters as effective catalysts to produce hydrogen from ammonia borane hydrolysis[J]. Renewable Energy,2020,154:11076−1082.
    [82] QIU F Y, LI L, LIU G, WANG Y J, AN C H, XU C C, XU Y A, WANG Y, JIAO L F, YUAN H T. Synthesis of Fe0.3Co0.7/rGO nanoparticles as a high performance catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2013,38(18):7291−7297. doi: 10.1016/j.ijhydene.2013.03.168
    [83] YAO Q L, LU Z H, JIA Y S, CHEN X S, LIU X. In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H2 generation from NH3BH3 hydrolysis[J]. Int J Hydrogen Energy,2015,40(5):2207−2215. doi: 10.1016/j.ijhydene.2014.12.047
    [84] SHEN J F, YANG L, HU K, LUO W, CHENG G Z. Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage[J]. Int J Hydrogen Energy,2015,40(2):1062−1070. doi: 10.1016/j.ijhydene.2014.11.031
    [85] YAO Q L, LU Z H, YANG K K, CHEN X S, ZHU M H. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane[J]. Sci Rep-UK,2015,5(1):15186. doi: 10.1038/srep15186
    [86] LU Z H, LI J P, FENG G, YAO Q L, ZHANG F, ZHOU R Y, TAO D J, CHEN X S, YU Z Q. Synergistic catalysis of MCM-41 immobilized Cu–Ni nanoparticles in hydrolytic dehydrogeneration of ammonia borane[J]. Int J Hydrogen Energy,2014,39(25):13389−13395. doi: 10.1016/j.ijhydene.2014.04.086
    [87] Hu L, ZHENG B, LAI Z P, HUANG K W. Room temperature hydrogen generation from hydrolysis of ammonia–borane over an efficient NiAgPd/C catalyst[J]. Int J Hydrogen Energy,2014,39(35):20031−20037. doi: 10.1016/j.ijhydene.2014.10.032
    [88] LIU P L, GU X J, KANG K, ZHANG H, CHEGN J, SU H Q. Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal-organic frameworks[J]. ACS Appl Mater Interfaces,2017,9(12):10759−10767. doi: 10.1021/acsami.7b01161
    [89] WANG C Y, SUN D D, YU X F, ZHANG X H, LU Z M, WANG X X, ZHAO J L, LI L L, YANG X J. Cu/Ni nanoparticles supported on TiO2(B) nanotubes as hydrogen generation photocatalysts via hydrolysis of ammonia borane[J]. Inorg Chem Front,2018,5(8):2038−2044. doi: 10.1039/C8QI00492G
    [90] YANG Y W, ZHANG F, WANG H L, YAO Q L, CHEN X S, LU Z H. Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation[J]. J Nanomater, 2014, 2014: 1–9.
    [91] YAN J M, WANG Z L, WANG H L, JIANG Q. Rapid and energy-efficient synthesis of a graphene-CuCo hybrid as a high performance catalyst[J]. J Mater Chem A,2012,22(22):10990−10993. doi: 10.1039/c2jm31042b
    [92] YANG X, LI Q L, LI L L, LIN J, YANG X J, YU C, LIU Z Y, FANG Y, HUANG Y, TANG C C. CuCo binary metal nanoparticles supported on boron nitride nanofibers as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Power Sources,2019,431:135−143. doi: 10.1016/j.jpowsour.2019.05.038
    [93] CAO N, SU J, LUO W, CHENG G Z. Hydrolytic dehydrogenation of ammonia borane and methylamine borane catalyzed by graphene supported Ru@Ni core–shell nanoparticles[J]. Int J Hydrogen Energy,2014,39(1):426−435. doi: 10.1016/j.ijhydene.2013.10.059
    [94] 邹爱华, 徐晓梅, 周浪, 林路贺, 康志兵. 石墨烯负载Co-CeOx纳米复合物的制备及其对氨硼烷水解产氢的催化性能[J]. 燃料化学学报,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3

    ZOU Ai-hua, XU Xiao-mei, ZHOU Lang, LIN Lu-he, KANG Zhi-bing. Synthesis of graphene-supported Co-CeOx nanocomposites as catalysts for hydrolytic dehydrogenation of ammonia borane[J]. J Fuel Chem Technol,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3
    [95] 石倩玉, 杨玉美, 王小萌, 于雅娜, 王茜, 魏磊. SBA-15负载钌基纳米粒子催化氨硼烷水解制氢[J]. 中国有色金属学报,2022,32(7):2042−2049.

    SHI Qian-yu, YANG Yu-mei, WANG Xiao-meng, YU Ya-na, WANG Qian, WEI Lei. SBA-15 supported ruthenium-based nanoparticles for catalytic hydrolysis of ammonia borane to generate hydrogen[J]. Chin J Nonferrous Metals,2022,32(7):2042−2049.
    [96] XIONG X, ZHOU L Q, YU G F, YANG K Z, YE M L, XIA Q H. Synthesis and catalytic performance of a novel RuCuNi/CNTs nanocomposite in hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2015,40(45):15521−15528. doi: 10.1016/j.ijhydene.2015.09.095
    [97] 程军, 邹勇进, 向翠丽, 郑良军, 孙立贤, 徐芳, 刘淑生. 纳米多孔Co-Ni-B/Cu-BTC复合材料的制备及其催化水解氨硼烷的研究[J]. 功能材料,2016,47(6):6152−6157.

    Cheng Jun, Zou Yong-jin, Xiang Cui-li, Zheng Liang-jun, SUN Li-xian, XU Fang, LIU Shu-sheng. Preparation of nanoporous Co-Ni-B/Cu-BTC composite and its catalytic hydrolysis of ammonia borane[J]. J Funct Mater,2016,47(6):6152−6157.
    [98] CHOWDHURY P, BIKKINA C, MEISTER D, DREISBACH F, GUMMA S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes[J]. Microporous Mesoporous Mater,2009,117(1/2):406−413. doi: 10.1016/j.micromeso.2008.07.029
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  487
  • HTML全文浏览量:  162
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-23
  • 修回日期:  2022-12-01
  • 录用日期:  2022-12-07
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回