留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Role of Ga in promoting epoxidation of cis-cyclooctene over Ga-WOx/SBA-15

LI Peng-hui WANG Hui-xiang LI Jun-fen LÜ Bao-liang

李鹏慧, 王会香, 李俊汾, 吕宝亮. Ga对0.3Ga-WOx/SBA-15催化顺式-环辛烯环氧化的促进作用[J]. 燃料化学学报(中英文), 2023, 51(10): 1453-1461. doi: 10.1016/S1872-5813(23)60350-0
引用本文: 李鹏慧, 王会香, 李俊汾, 吕宝亮. Ga对0.3Ga-WOx/SBA-15催化顺式-环辛烯环氧化的促进作用[J]. 燃料化学学报(中英文), 2023, 51(10): 1453-1461. doi: 10.1016/S1872-5813(23)60350-0
LI Peng-hui, WANG Hui-xiang, LI Jun-fen, LÜ Bao-liang. Role of Ga in promoting epoxidation of cis-cyclooctene over Ga-WOx/SBA-15[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1453-1461. doi: 10.1016/S1872-5813(23)60350-0
Citation: LI Peng-hui, WANG Hui-xiang, LI Jun-fen, LÜ Bao-liang. Role of Ga in promoting epoxidation of cis-cyclooctene over Ga-WOx/SBA-15[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1453-1461. doi: 10.1016/S1872-5813(23)60350-0

Ga对0.3Ga-WOx/SBA-15催化顺式-环辛烯环氧化的促进作用

doi: 10.1016/S1872-5813(23)60350-0
详细信息
  • 中图分类号: O643.322

Role of Ga in promoting epoxidation of cis-cyclooctene over Ga-WOx/SBA-15

Funds: The project was supported by the National Natural Science Foundation of China (21972158), Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (2021017), Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2021-K10), Natural Science Foundation of Shanxi Province (SQ2019006) and Patent Conversion Foundation of Shanxi Province (202202093)
More Information
  • 摘要: 本工作研究了镓(Ga)对Ga-WOx/SBA-15催化H2O2与顺式-环辛烯环氧化反应活性的促进作用。最佳催化剂0.3Ga-WOx/SBA-15的TOF为112 h–1,是WOx/SBA-15(57 h–1)的近两倍。相较于WOx/SBA-15(64.0 kJ/mol),0.3Ga-WOx/SBA-15的低表观反应活化能(49.6 kJ/mol)与其优异的环氧化性能一致。动力学分析表明,H2O2在0.3Ga-WOx/SBA-15表面上的吸附更强,这有助于H2O2的活化。基于催化剂的表征和环氧化的性能表明,Ga添加剂的提升作用归因于Lewis酸位点的增加和亲电性的增强。此外,金属过氧化氢(M-OOH)被鉴定为主要中间体。
  • FIG. 2704.  FIG. 2704.

    FIG. 2704.  FIG. 2704.

    Figure  1  TEM images of WOx/SBA-15 (a) and 0.3Ga-WOx/SBA-15 (c); and the corresponding EDX-mapping (b) and (d)

    Figure  2  XRD patterns of WOx/SBA-15 and 0.3Ga-WOx/SBA-15

    Figure  3  Raman spectra of 0.3Ga-WOx/SBA-15, WOx/SBA-15 and pure SBA-15

    Figure  4  XPS of W 4f (a) and Ga 2p (b) binding energy spectra

    Figure  5  Performance of catalysts with different molar ratio of Ga/WReaction conditions: 50 mg of the catalyst, 10 mL of CH3CN, 0.4 mL of substrate and 0.4 mL of 30% H2O2 at 70 °C for 2 h

    Figure  6  Profiles of the two catalysts for cis-cyclooctene epoxidation with H2O2Reaction conditions: 50 mg of the catalyst, 10 mL of CH3CN, 0.4 mL of substrate and 0.4 mL of 30% H2O2 at 70 °C

    Figure  7  Arrhenius plots for cis-cyclooctene epoxidation with H2O2 over the two catalysts (a) and (b); rate order measurements for H2O2 (c) and cis-cyclooctene (d)Reaction conditions for (c) and (d): 0.2–0.6 mol/L H2O2, 0.28 mol/L cis-cyclooctene; 0.36 mol/L H2O2, 0.2–0.5 mol/L cis-cyclooctene, respectively

    Figure  8  FT-IR-Py spectra of WOx/SBA-15 (a) and 0.3Ga-WOx/SBA-15 (b); FT-IR absorbance intensities for the Lewis-acid bound pyridine as a function of inverse temperature for WOx/SBA-15 (c) and 0.3Ga-WOx/SBA-15 (d)

    Figure  9  UV-vis of the catalysts under various conditions Reaction condition: 100 mg of catalyst, 5 mL of CH3CN, 0.5 mL of H2O2 and 0.1 mL of HCl (1 mol/L), if any, then stirred for 10 min, after that, the mixture was freeze-dried immediately and used for the measurement

    Figure  10  Mechanism for epoxidation of cis-cyclooctene with H2O2

  • [1] GENG A-Y, DING G-Q, SHE H-H, WANG H-X, LI X-Q, ZHU Y-L. Effect of hydrolysis of tetraethyl orthosilicate (TEOS) on titanium distribution of TS-1 zeolite[J]. J Fuel Chem Technol,2022,50(11):1471−1479.
    [2] XING X, WANG H, SHI J, LI P, REN J, WANG L, ZHANG J, LIU Z, LV B. WOx/C heterogeneous catalyst with oxygen vacancies and deficient Brönsted acid for epoxidation of 1-hexene[J]. Catal Lett, 2022, 153: 1180−1192.
    [3] GUO Z, LIU B, ZHANG Q, DENG W, WANG Y, YANG Y. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry[J]. Chem Soc Rev,2014,43(10):3480−3524. doi: 10.1039/c3cs60282f
    [4] LANE B S, BURGESS K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide[J]. Chem Rev,2003,103(7):2457−2474. doi: 10.1021/cr020471z
    [5] REN J, WANG L, LI P, XING X, WANG H, LV B. Ag supported on alumina for the epoxidation of 1-hexene with molecular oxygen: the effect of Ag + /Ag0[J]. New J Chem,2022,46(10):4792−4799. doi: 10.1039/D1NJ05926B
    [6] LI W, WU G, HU W, DANG J, WANG C, WENG X, DA SILVA I, MANUEL P, YANG S, GUAN N, LI L. Direct propylene epoxidation with molecular oxygen over cobalt-containing zeolites[J]. J Am Chem Soc,2022,144(9):4260−4268. doi: 10.1021/jacs.2c00792
    [7] OYAMA S T. Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis[M]. Amsterdam: Elsevier, 2008.
    [8] YAN W, ZHANG G, YAN H, LIU Y, CHEN X, FENG X, JIN X, YANG C. Liquid-phase epoxidation of light olefins over W and Nb nanocatalysts[J]. ACS Sustainable Chem Eng,2018,6(4):4423−4452. doi: 10.1021/acssuschemeng.7b03101
    [9] DISSANAYAKE S, VORA N, ACHOLA L, DANG Y, HE J, TOBIN Z, LU X, MIRICH A, GAO P-X, SUIB S L. Synergistic catalysis by Mn promoted ceria for molecular oxygen assisted epoxidation[J]. Appl Catal B: Environ,2021,282:119573. doi: 10.1016/j.apcatb.2020.119573
    [10] PESCARMONA P P, VAN NOYEN J, JACOBS P A. Transition-metal-free microporous and mesoporous catalysts for the epoxidation of cyclooctene with hydrogen peroxide[J]. J Catal,2007,251(2):307−314. doi: 10.1016/j.jcat.2007.08.003
    [11] HAMMOND C, STRAUS J, RIGHETTONI M, PRATSINIS S E, HERMANS I. Nanoparticulate tungsten oxide for catalytic epoxidations[J]. ACS Catal,2013,3(3):321−327. doi: 10.1021/cs300826c
    [12] DEVOS D E, SELS B F, JACOBS P A. Practical heterogeneous catalysts for epoxide production[J]. Adv Synth Catal,2003,345(4):457−473. doi: 10.1002/adsc.200390051
    [13] BORDIGA S, BONINO F, DAMIN A, LAMBERTI C. Reactivity of Ti(IV) species hosted in TS-1 towards H2O2-H2O solutions investigated by ab initio cluster and periodic approaches combined with experimental XANES and EXAFS data: A review and new highlights[J]. Phys Chem Chem Phys,2007,9(35):4854−4878. doi: 10.1039/b706637f
    [14] BISIO C, GALLO A, PSARO R, TIOZZO C, GUIDOTTI M, CARNIATO F. Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes[J]. Appl Catal A: Gen,2019,581:133−142. doi: 10.1016/j.apcata.2019.05.027
    [15] TAO Y, DE LUCA O, SINGH B, KAMPHUIS A J, CHEN J, RUDOLF P, PESCARMONA P P. WO3-SiO2 nanomaterials synthesized using a novel template-free method in supercritical CO2 as heterogeneous catalysts for epoxidation with H2O2[J]. Mater Today Chem,2020,18:100373. doi: 10.1016/j.mtchem.2020.100373
    [16] LI P, GAO J, SHI J, WANG H, XING X, REN J, MENG Y, WANG L, LV B. Insights into the effect of oxygen vacancies on the epoxidation of 1-hexene with hydrogen peroxide over WO3−x/SBA-15[J]. Catal Sci Technol,2022,12(22):6827−6837. doi: 10.1039/D2CY01123A
    [17] KAMATA K, YONEHARA K, SUMIDA Y, HIRATA K, NOJIMA S, MIZUNO N. Efficient heterogeneous epoxidation of alkenes by a supported tungsten oxide catalyst[J]. Angew Chem Int Ed,2011,50(50):12062−12066. doi: 10.1002/anie.201106064
    [18] ZHANG H, YANG X, SONG X, CHANG X, JIA M. Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation[J]. Microporous Mesoporous Mater,2020,303:110277. doi: 10.1016/j.micromeso.2020.110277
    [19] YANG X-L, DAI W-L, GAO R, FAN K. Characterization and catalytic behavior of highly active tungsten-doped SBA-15 catalyst in the synthesis of glutaraldehyde using an anhydrous approach[J]. J Catal,2007,249(2):278−288. doi: 10.1016/j.jcat.2007.05.002
    [20] DESAI S P, YE J, ZHENG J, FERRANDON M S, WEBBER T E, PLATERO-PRATS A E, DUAN J, GARCIA-HOLLEY P, CAMAIONI D M, CHAPMAN K W, DELFERRO M, FARHA O K, FULTON J L, GAGLIARDI L, LERCHER J A, PENN R L, STEIN A, LU C C. Well-defined rhodium-gallium catalytic sites in a metal-organic framework: Promoter-controlled selectivity in alkyne semihydrogenation to E-alkenes[J]. J Am Chem Soc,2018,140(45):15309−15318. doi: 10.1021/jacs.8b08550
    [21] SOLA A C, BROCH GÖSSER M, RAMÍREZ DE LA PISCINA P, HOMS N. Promoter effect of Ga in Pt/Ga-TiO2 catalysts for the photo-production of H2 from aqueous solutions of ethanol[J]. Catal Today,2017,287:85−90. doi: 10.1016/j.cattod.2017.01.043
    [22] KANG S-H, BAE J W, PRASAD P S S, OH J-H, JUN K-W, SONG S-L, MIN K-S. Influence of Ga addition on the methanol synthesis activity of Cu/ZnO catalyst in the presence and absence of alumina[J]. J Ind Eng Chem,2009,15(5):665−669. doi: 10.1016/j.jiec.2009.09.041
    [23] CAO Y, WANG H, DING R, WANG L, LIU Z, LV B. Highly efficient oxidative desulfurization of dibenzothiophene using Ni modified MoO3 catalyst[J]. Appl Catal A: Gen,2020,589:117308. doi: 10.1016/j.apcata.2019.117308
    [24] WANG H, TANG M, SHI F, DING R, WANG L, WU J, LI X, LIU Z, LV B. Amorphous Cr2WO6-modified WO3 nanowires with a large specific surface area and rich Lewis acid sites: A highly efficient catalyst for oxidative desulfurization[J]. ACS Appl Mater Interfaces,2020,12(34):38140−38152.
    [25] XING X-Y, WANG H-X, WANG L-C, LV B-L. Regulation of Co2 + cations on the content of Brönsted acid site and oxygen vacancy of WOx to improve the epoxidation performance of 1-hexene[J]. J Fuel Chem Technol,2022,50(11):1480−1490.
    [26] WU T, LIU G, ZENG L, SUN G, CHEN S, MU R, AGBOTSE GBONFOUN S, ZHAO Z-J, GONG J. Structure and catalytic consequence of Mg-modified VOx/Al2O3 catalysts for propane dehydrogenation[J]. AlChE J,2017,63(11):4911−4919. doi: 10.1002/aic.15836
    [27] ARENDS I W C E, SHELDON R A. Recent developments in selective catalytic epoxidations with H2O2[J]. Top Catal,2002,19(1):133−141. doi: 10.1023/A:1013897703249
    [28] KANDASAMY B, VANHAECHT S, NKALA F M, BEELEN T, BASSIL B S, PARAC-VOGT T N, KORTZ U. Gallium(III)-containing, sandwich-type heteropolytungstates: Synthesis, solution characterization, and hydrolytic studies toward phosphoester and phosphoanhydride bond cleavage[J]. Inorg Chem,2016,55(18):9204−9211. doi: 10.1021/acs.inorgchem.6b01030
    [29] LAI P-C, CHEN C-H, HSU H-Y, LEE C-H, LIN Y-C. Methanol aromatization over Ga-doped desilicated HZSM-5[J]. RSC Adv,2016,6(71):67361−67371. doi: 10.1039/C6RA16052B
    [30] BRIOT E, PIQUEMAL J Y, VENNAT M, BRÉGEAULT J M, CHOTTARD G, MANOLI J M. Aqueous acidic hydrogen peroxide as an efficient medium for tungsten insertion into MCM-41 mesoporous molecular sieves with high metal dispersion[J]. J Mater Chem,2000,10(4):953−958. doi: 10.1039/a908428b
    [31] EGGENHUISEN T M, MUNNIK P, TALSMA H, DE JONGH P E, DE JONG K P. Freeze-drying for controlled nanoparticle distribution in Co/SiO2 Fischer-Tropsch catalysts[J]. J Catal,2013,297:306−313. doi: 10.1016/j.jcat.2012.10.024
    [32] KIM D S, OSTROMECKI M, WACHS I E. Surface structures of supported tungsten oxide catalysts under dehydrated conditions[J]. J Mol Catal A: Chem,1996,106(1):93−102.
    [33] KIM D S, OSTROMECKI M, WACHS I E, KOHLER S D, EKERDT J G. Preparation and characterization of WO3/SiO2 catalysts[J]. Catal Lett,1995,33(3):209−215.
    [34] CHEN G, WANG Q, ZHAO Z, GAO L, LI X. Synthesis and photocatalytic activity study of S-doped WO3 under visible light irradiation[J]. Environ Sci Pollut Res,2020,27(13):15103−15112. doi: 10.1007/s11356-020-07827-z
    [35] ILHOM S, MOHAMMAD A, GRASSO J, WILLIS B G, OKYAY A K, BIYIKLI N. Reducing the β-Ga2O3 epitaxy temperature to 240 °C via atomic layer plasma processing[J]. ACS Appl Electron Mater,2023,5(1):335−343.
    [36] SONG J, HUANG Z-F, PAN L, ZOU J-J, ZHANG X, WANG L. Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst[J]. ACS Catal,2015,5(11):6594−6599. doi: 10.1021/acscatal.5b01522
    [37] BENARD S, BAYLET A, VERNOUX P, VALVERDE J L, GIROIR-FENDLER A. Kinetics of the propene oxidation over a Pt/alumina catalyst[J]. Catal Commun,2013,36:63−66. doi: 10.1016/j.catcom.2013.03.001
    [38] ISHIKAWA E, KIHARA D, TOGAWA Y, OOKAWA C. Cyclooctene epoxidation by hydrogen peroxide in the presence of vanadium-substituted lindqvist-type polyoxotungstate [VW5O19]3–[J]. Eur J Inorg Chem, 2019, (3/4): 402–409.
    [39] YU Y, TANG Z, WANG J, WANG R, CHEN Z, LIU H, SHEN K, HUANG X, LIU Y, HE M. Insights into the efficiency of hydrogen peroxide utilization over titanosilicate/H2O2 systems[J]. J Catal,2020,381:96−107. doi: 10.1016/j.jcat.2019.09.045
    [40] IVANCHIKOVA I D, SKOBELEV I Y, MAKSIMCHUK N V, PAUKSHTIS E A, SHASHKOV M V, KHOLDEEVA O A. Toward understanding the unusual reactivity of mesoporous niobium silicates in epoxidation of C=C bonds with hydrogen peroxide[J]. J Catal,2017,356:85−99. doi: 10.1016/j.jcat.2017.09.011
    [41] DEVIANA D, BAE RHIM G, KIM Y-E, SONG LEE H, WOO LEE G, HYE YOUN M, YOUNG KIM K, YOUNG KOO K, PARK J, HYUN CHUN D. Unravelling acidity-selectivity relationship in the bifunctional process of Fischer-Tropsch synthesis and catalytic cracking[J]. Chem Eng J,2023,455:140646. doi: 10.1016/j.cej.2022.140646
    [42] AL-DUGHAITHER A S, DE LASA H. HZSM-5 zeolites with different SiO2/Al2O3 ratios. Characterization and NH3 desorption kinetics[J]. Ind Eng Chem Res,2014,53(40):15303−15316. doi: 10.1021/ie4039532
    [43] GONZÁLEZ J, WANG J A, CHEN L F, MANRÍQUEZ M E, DOMINGUEZ J M. Structural defects, Lewis acidity, and catalysis properties of mesostructured WO3/SBA-15 nanocatalysts[J]. J Phys Chem C,2017,121(43):23988−23999. doi: 10.1021/acs.jpcc.7b06373
    [44] YANG H, LIU Q, LI Y, SUN K, CHEN Z, PENG Q, CHEN C. Isolated single-atom ruthenium anchored on beta zeolite as an efficient heterogeneous catalyst for styrene epoxidation[J]. ChemNanoMat,2020,6(11):1647−1651. doi: 10.1002/cnma.202000394
    [45] BREGANTE D T, THORNBURG N E, NOTESTEIN J M, FLAHERTY D W. Consequences of confinement for alkene epoxidation with hydrogen peroxide on highly dispersed group 4 and 5 metal oxide catalysts[J]. ACS Catal,2018,8(4):2995−3010. doi: 10.1021/acscatal.7b03986
    [46] BREGANTE D T, FLAHERTY D W. Periodic trends in olefin epoxidation over group IV and V framework-substituted zeolite catalysts: a kinetic and spectroscopic study[J]. J Am Chem Soc,2017,139(20):6888−6898. doi: 10.1021/jacs.7b01422
    [47] AYLA E Z, POTTS D S, BREGANTE D T, FLAHERTY D W. Alkene epoxidations with H2O2 over groups 4–6 metal-substituted BEA zeolites: reactive intermediates, reaction pathways, and linear free-energy relationships[J]. ACS Catal,2021,11(1):139−154. doi: 10.1021/acscatal.0c03394
    [48] ZHOU Q, XU B, TANG X, DAI S, DING B, LI D, ZHENG A, ZHANG T, YAO Y, GONG X, HOU Z. Role of organic fluoride salts in stabilizing niobium oxo-clusters catalyzing epoxidation[J]. Langmuir,2021,37(27):8190−8203. doi: 10.1021/acs.langmuir.1c00893
    [49] ZHANG M, SINGH V, HU X, MA X, LU J, ZHANG C, WANG J, NIU J. Efficient olefins epoxidation on ultrafine H2O-WOx nanoparticles with spectroscopic evidence of intermediate species[J]. ACS Catal,2019,9(9):7641−7650. doi: 10.1021/acscatal.9b01226
    [50] ROSS-MEDGAARDEN E I, WACHS I E. Structural determination of bulk and surface tungsten oxides with UV-vis diffuse reflectance spectroscopy and Raman spectroscopy[J]. J Phys Chem C,2007,111(41):15089−15099. doi: 10.1021/jp074219c
    [51] TIOZZO C, BISIO C, CARNIATO F, GUIDOTTI M. Grafted non-ordered niobium-silica materials: Versatile catalysts for the selective epoxidation of various unsaturated fine chemicals[J]. Catal Today,2014,235:49−57. doi: 10.1016/j.cattod.2014.02.027
    [52] BRUTCHEY R L, RUDDY D A, ANDERSEN L K, TILLEY T D. Influence of surface modification of Ti-SBA-15 catalysts on the epoxidation mechanism for cyclohexene with aqueous hydrogen peroxide[J]. Langmuir,2005,21(21):9576−9583. doi: 10.1021/la051182j
  • 加载中
图(11)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  43
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-13
  • 修回日期:  2023-03-06
  • 录用日期:  2023-03-07
  • 网络出版日期:  2023-03-24
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回