留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

糠醛渣对气化煤灰熔融特性影响的研究

马晓彤 王志刚 鲁浩 庄淑娟 王烟霞 刘伟 赵江山 孔令学

马晓彤, 王志刚, 鲁浩, 庄淑娟, 王烟霞, 刘伟, 赵江山, 孔令学. 糠醛渣对气化煤灰熔融特性影响的研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1373-1382. doi: 10.1016/S1872-5813(23)60355-X
引用本文: 马晓彤, 王志刚, 鲁浩, 庄淑娟, 王烟霞, 刘伟, 赵江山, 孔令学. 糠醛渣对气化煤灰熔融特性影响的研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1373-1382. doi: 10.1016/S1872-5813(23)60355-X
MA Xiao-tong, WANG Zhi-gang, LU Hao, ZHUANG Shu-juan, WANG Yan-xia, LIU Wei, ZHAO Jiang-shan, KONG Ling-xue. Study on effect of furfural residue addition on fusion characteristics of gasification coal ash[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1373-1382. doi: 10.1016/S1872-5813(23)60355-X
Citation: MA Xiao-tong, WANG Zhi-gang, LU Hao, ZHUANG Shu-juan, WANG Yan-xia, LIU Wei, ZHAO Jiang-shan, KONG Ling-xue. Study on effect of furfural residue addition on fusion characteristics of gasification coal ash[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1373-1382. doi: 10.1016/S1872-5813(23)60355-X

糠醛渣对气化煤灰熔融特性影响的研究

doi: 10.1016/S1872-5813(23)60355-X
基金项目: 山东省自然科学基金(ZR2020KB014,ZR2022QB206)资助
详细信息
    通讯作者:

    Email:wangzhigang158@163.com

  • 中图分类号: TQ54

Study on effect of furfural residue addition on fusion characteristics of gasification coal ash

Funds: The project was supported by the Natural Science Foundation of ShanDong Province (ZR2020KB014,ZR2022QB206)
  • 摘要: 本研究选择一种典型糠醛渣和两种硅铝比(Si/Al)不同的气化煤,考察配入糠醛渣对两种气化煤灰熔融温度的影响,利用X射线衍射仪(XRD)分析了不同温度下灰渣的矿物质变化规律,采用热力学计算软件FactSage计算了平衡状态下的物相变化。研究结果表明,随着糠醛渣配比的增加,两种气化煤灰的熔融温度均呈现先增加后降低的趋势,其中,高硅铝比的气化煤灰增加趋势更显著。配入糠醛渣后气化灰渣难熔相由钙长石(CaAl2Si2O8)变为白榴石(KAlSi2O6),白榴石(KAlSi2O6)在1300 ℃仍以固相形式存在,导致灰熔融温度升高。硅铝比高的气化煤灰的SiO2相对含量高,其与糠醛渣中的K2O反应生成更多高熔点的白榴石(KAlSi2O6),导致其熔融温度升高趋势更显著。随着糠醛渣配比的继续增加,共气化灰渣中K2O含量增加,灰渣中形成低熔点的钾霞石(KAlSiO4),降低了灰熔融温度。
  • FIG. 2696.  FIG. 2696.

    FIG. 2696.  FIG. 2696.

    图  1  SA和其配入50%BA后灰样在不同温度下的外观形貌

    Figure  1  Ash morphology of SA and the SA with 50% BA at different temperatures(a): SA; (b): SA blended with 50% BA

    图  2  QA和其配入50%BA后灰样在不同温度下的外观形貌

    Figure  2  Ash morphology of QA and the QA with 50% BA at different temperatures(a): QA; (b): QA blended with 50% BA

    (a): QA; (b): QA blended with 50% BA

    图  3  气化煤灰的熔融温度随糠醛渣灰BA配比的变化

    Figure  3  Variation of gasification coal ash fusion temperatures with the addition ratio of BA ash (a): SA; (b): QA

    图  4  煤灰流动温度随酸碱比的变化

    Figure  4  Change of blending ash FT with BA ratio

    图  5  BA样品在不同温度下的XRD谱图

    Figure  5  XRD patterns of BA slag at different temperatures (1: SiO2; 2: K2SO4; 3: CaSiO3; 4: KAlSiO4)

    图  6  不同BA配比的SA灰渣1100 ℃时的XRD谱图

    Figure  6  XRD patterns of SA slag and its blending slag with different BA ratios at 1100 ℃(1: SiO2; 3: CaSiO3; 4: KAlSiO4; 5: FeSiO3; 6: CaAl2Si2O8; 7: Ca2Al2SiO7; 8: KAlSi2O6

    图  7  不同BA配比的SA灰渣1200 ℃的XRD谱图

    Figure  7  XRD patterns of SA slag and its blending slag with different BA ratios at 1200 ℃ (3: CaSiO3; 6: CaAl2Si2O8; 8: KAlSi2O6; 9: CaAl2SiO7

    图  8  不同BA配比的QA灰渣1100 ℃的XRD谱图

    Figure  8  XRD patterns of QA slag and its blending slag with different BA ratios at 1100 ℃(1: SiO2; 3: CaSiO3; 4: KAlSiO4; 5: FeSiO3; 6: CaAl2Si2O8; 7: Ca2Al2SiO7; 8: KAlSi2O6

    图  9  不同BA配比的QA灰渣1200 ℃的XRD谱图

    Figure  9  XRD patterns of QA slag and its blending slag with different BA ratios at 1200 ℃(3: CaSiO3; 4: KAlSiO4; 5: FeSiO3; 6: CaAl2Si2O8; 7: Ca2Al2SiO7; 8: KAlSi2O6

    图  10  SA与BA混合灰的物相变化

    Figure  10  Mineral transformation of SA and BA blending ash

    (a): SA; (b): 30%BA + 70%SA; (c): 90%BA + 10%SA; (d): BA

    图  11  QA与BA混合灰的物相变化

    Figure  11  Mineral transformation of QA and BA blending ash

    (a): QA; (b): 30%BA + 70%QA; (c): 90%BA + 10%QA

    图  12  SiO2-Al2O3-K2O的三元组分相图

    Figure  12  Ternary equilibrium phase diagram for SiO2-Al2O3-K2O

    表  1  煤与糠醛渣的灰成分分析

    Table  1  Chemical compositions of coal and furfural residue ash

    SampleContent w/%
    SiO2Al2O3Fe2O3CaOMgOTiO2SO3K2ONa2OP2O5
    SA43.8514.4712.3019.201.270.624.881.491.700.24
    QA41.1019.5610.3118.531.870.822.101.053.340.40
    BA24.494.733.493.892.960.2520.8730.523.094.53
    下载: 导出CSV

    表  2  煤与糠醛渣的灰熔融温度

    Table  2  Ash fusion temperatures of coal and furfural residue

    SampleTemperature t/℃
    DTSTHTFT
    SA1103112811361156
    QA1108112411511194
    BA1115114411771237
    下载: 导出CSV
  • [1] BI S X, LIU W Y, WANG C H, ZHAN H J. A versatile approach to the synthesis of biomass derived from furfural residues as a potential adsorbent[J]. J Environ Chem Eng,2018,6(4):5049−5052. doi: 10.1016/j.jece.2018.07.038
    [2] 冯亭杰, 张杰, 张诗仪. 我国糠醛生产技术进展及市场分析[J]. 河南化工,2019,36(9):7−10.

    FENG Ting-jie, ZHANG Jie, ZHANG Shi-yi. Technical progress and market analysis of furfural production in China[J]. Henan Chem Ind,2019,36(9):7−10.
    [3] 朱性贵, 张本峰, 朱迎红, 范子久. 生物质(糠醛渣)循环流化床锅炉的开发应用及优化[J]. 中氮肥,2020,1:56−58 + 62. doi: 10.3969/j.issn.1004-9932.2020.01.018

    ZHU Xing-gui, ZHANG Ben-feng, ZHU Ying-hong, FAN Zi-jiu. Development, application and optimization of biomass (furfural residue) circulating fluidized bed boiler[J]. M-Sized Nitro Fer Prog,2020,1:56−58 + 62. doi: 10.3969/j.issn.1004-9932.2020.01.018
    [4] 付伟贤. 中国气流床气化技术现状及发展趋势[J]. 化工管理,2020,13:79−81. doi: 10.3969/j.issn.1008-4800.2020.13.043

    FU Wei-xian. Status quo and development trend of entrained flow gasification technology in China[J]. Chem manage,2020,13:79−81. doi: 10.3969/j.issn.1008-4800.2020.13.043
    [5] 戴爱军, 杜彦学, 谢欣馨. 煤灰成分与灰熔融性关系研究进展[J]. 煤化工,2009,37(4):16−19. doi: 10.3969/j.issn.1005-9598.2009.04.005

    DAI Ai-jun, DU Yan-xue, XIE Xin-xin. Research progress on the relationship between coal ash components and ash fusion character[J]. Coal Chem Ind,2009,37(4):16−19. doi: 10.3969/j.issn.1005-9598.2009.04.005
    [6] 孔令学, 白进, 李文, 白宗庆, 郭振兴. 氧化钙含量对灰渣流体性质影响的研究[J]. 燃料化学学报,2011,39(6):407−412. doi: 10.3969/j.issn.0253-2409.2011.06.002

    KONG Ling-xue, BAI Jin, LI Wen, BAI Zong-qing, GUO Zhen-xing. Effect of lime addition on slag fluidity of coal ash[J]. J Fuel Chem Technol,2011,39(6):407−412. doi: 10.3969/j.issn.0253-2409.2011.06.002
    [7] CAI B L, LI H X, ZHAO S X, SUN H G, LI P T. Corrosion of high chromia refractory materials by basic coal slag under simulated coal gasification atmosphere[J]. Ceram Int,2018,44(5):4592−4602. doi: 10.1016/j.ceramint.2017.11.023
    [8] ZHAO Y L, ZHANG Y M, BAO S X, CHEN T Y, LIU X. Effect of stone coal chemical composition on sintering behavior during roasting[J]. Ind Eng Chem Res,2014,53(1):157−163. doi: 10.1021/ie4022144
    [9] DYK J C. Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources[J]. Miner Eng,2006,19(3):280−286. doi: 10.1016/j.mineng.2005.06.018
    [10] XIAO H P, QI C, CHENG Q Y, DOU C Z, RU Y. Effect of sodium-containing sulfates on ash fusibility[J]. Energy Fuels,2018,32(9):9908−9915. doi: 10.1021/acs.energyfuels.8b01798
    [11] 曹琴, 黄胜, 吴诗勇, 吴幼青, 高晋生. 生物质中矿物质在气化条件下的演变行为研究[J]. 燃料化学学报,2016,44(6):668−673.

    CAO Qin, HUANG Sheng, WU Shi-yong, WU You-ging, GAO Jin-sheng. Evolution behaviors of mineral matters in biomass under gasification conditions[J]. J Fuel Chem Technol,2016,44(6):668−673.
    [12] ZHANG L M, WANG J F, SONG X D, BAI Y H, MIN Y. Influence of biomass ash additive on fusion characteristics of high-silicon-aluminum coal ash[J]. Fuel,2020,282:118876. doi: 10.1016/j.fuel.2020.118876
    [13] 唐建业, 陈雪莉, 乔治, 刘爱彬, 王辅臣. 添加秸秆类生物质对长平煤灰熔融特性的影响[J]. 化工学报,2014,65(12):4948−4957.

    TANG Jian-ye, CHEN Xue-li, QIAO Zhi, LIU Ai-bin, WANG Fu-chen. Influence of agro-biomass addition on Changping coal ash melting characteristics[J]. CIESC J,2014,65(12):4948−4957.
    [14] 马修卫, 李风海, 马名杰, 房倚天. 长治煤与生物质混合灰熔融特性研究[J]. 燃料化学学报,2018,46(2):129−137. doi: 10.1016/S1872-5813(18)30007-0

    MA Xiu-wei, LI Feng-hai, MA Ming-jie, FANG Yi-tian. Fusion characteristics of blended ash from Changzhi coal and biomass[J]. J Fuel Chem Technol,2018,46(2):129−137. doi: 10.1016/S1872-5813(18)30007-0
    [15] 李晓明, 张红, 智丽飞. 碱金属K对无烟煤煤灰熔融性的影响规律[J]. 热科学与技术,2019,18(6):483−489.

    LI Xiao-ming, ZHANG Hong, ZHI Li-fei. Effect of alkali metal K on the fusibility of anthracite ash[J]. J Therm Sci Tech-Jpn,2019,18(6):483−489.
    [16] 李洪涛, 徐有宁, 黄景立, 纪桂英. 生物质与煤混烧灰的熔融性实验研究[J]. 锅炉制造,2011,1(1):48−50. doi: 10.3969/j.issn.1674-1005.2011.01.015

    LI Hong-tao, XU You-ning, HUANG Jing-li, JI Gui-ying. Experiment study on ash fusing character during Co-firing of coal and biomass[J]. Boiler Manu,2011,1(1):48−50. doi: 10.3969/j.issn.1674-1005.2011.01.015
    [17] XU J, SONG X D, YU G S, DU C H. Investigating the effect of flux on ash fusibility of high-calcium coal[J]. ACS Omega,2020,5(20):11361−11368. doi: 10.1021/acsomega.0c00320
    [18] 胡云鹏, 程世庆, 谢敬思, 程琦雯, 张慧敏. 梧桐木与烟煤混烧的灰分特性分析[J]. 燃料化学学报,2012,40(3):286−292. doi: 10.3969/j.issn.0253-2409.2012.03.006

    HU Yun-peng, CHENG Shi-qing, XIE Jing-si, CHENG Qi-wen, ZHANG Hui-min. Analysis of the ash characteristic during cofiring of platane wood and bitumite[J]. J Fuel Chem Technol,2012,40(3):286−292. doi: 10.3969/j.issn.0253-2409.2012.03.006
    [19] LIU Y J, YAN T G, AN Y, ZHANG W, DONG Y. Influence of water leaching on alkali-induced slagging properties of biomass straw[J]. J Fuel Chem Technol,2021,49(12):1839−1850. doi: 10.1016/S1872-5813(21)60147-0
    [20] ZHANG L M, WEI J T, SONG X D, SU W G. Investigation on coal ash fusibility and fluidity during the co-gasification of coal and coal indirect liquefaction residue[J]. Fuel Process Technol,2021,221:106949. doi: 10.1016/j.fuproc.2021.106949
    [21] 吴锁贞, 伦飞, 屠卡滨, 王庆松, 程健林, 张洪. 晋城煤粉中硫的形态、分布及对煤灰熔融性影响的研究[J]. 燃料化学学报,2020,48(6):649−654. doi: 10.3969/j.issn.0253-2409.2020.06.002

    WU Suo-zhen, LUN Fei, TU Ka-bin, WANG Qing-song, CHENG Jian-lin, ZHANG Hong. Form and distribution of sulfur in pulverized Jincheng coal and their influence on its ash fusibility[J]. J Fuel Chem Technol,2020,48(6):649−654. doi: 10.3969/j.issn.0253-2409.2020.06.002
    [22] 王立群, 许超杰, 白文斌, 陈冲. 甘蔗渣与煤共气化试验研究[J]. 重庆理工大学学报,2016,30(6):70−74. doi: 10.3969/j.issn.1674-8425(z).2016.06.013

    WANG Li-qun, XU Chao-jie, BAI Wen-bin, CHEN Chong. Experiment of Co-gasification of sugarcane bagasse and coal[J]. J Chongqing Univ Technol,2016,30(6):70−74. doi: 10.3969/j.issn.1674-8425(z).2016.06.013
    [23] 李平, 梁钦锋, 刘霞, 龚欣. 酸碱比值与助熔剂对煤灰熔融流动温度影响的研究[J]. 大氮肥,2010,33(2):107−111. doi: 10.3969/j.issn.1002-5782.2010.02.012

    LI Ping, LIANG Qin-feng, LIU Xia, GONG Xin. Study on the Influence of acid base ratio and flux on the melting flow temperature of coal ash[J]. Large Scale Nitro Fer Ind,2010,33(2):107−111. doi: 10.3969/j.issn.1002-5782.2010.02.012
    [24] 周言. 煤和生物质灰熔融特性及对耐火材料侵蚀机理研究[D]. 镇江: 江苏大学, 2020.

    ZHOU Yan. Study on the melting characteristics of coal and biomass ash and corrosion mechanism of refractory[D]. Zhenjiang: Jiangsu University, 2020.
    [25] YAN T, BAI J, KONG L X, BAI Z Q, LI W. Effect of SiO2/Al2O3 on fusion behavior of coal ash at high temperature[J]. Fuel,2017,193(1):275−283.
    [26] WANG J J, LIU X, GUO Q H, WEI J T, CHEN X L. Application of biomass leachate in regulating the fusibility of coal ash[J]. Fuel,2020,268(15):117338.
    [27] WEI J T, GONG Y, GUO Q H, CHEN X L, DING L. A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals[J]. Renewable Energy,2019,131:597−605. doi: 10.1016/j.renene.2018.07.075
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  420
  • HTML全文浏览量:  290
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-18
  • 修回日期:  2023-03-02
  • 录用日期:  2023-03-02
  • 网络出版日期:  2023-04-06
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回