留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低阶煤热解磁化及其半焦产物中硫和重金属分布特性

初茉 高敏 杨彦博 胡家宝 吕飞勇 王浩阳 王靓亮

初茉, 高敏, 杨彦博, 胡家宝, 吕飞勇, 王浩阳, 王靓亮. 低阶煤热解磁化及其半焦产物中硫和重金属分布特性[J]. 燃料化学学报(中英文), 2023, 51(10): 1359-1372. doi: 10.1016/S1872-5813(23)60359-7
引用本文: 初茉, 高敏, 杨彦博, 胡家宝, 吕飞勇, 王浩阳, 王靓亮. 低阶煤热解磁化及其半焦产物中硫和重金属分布特性[J]. 燃料化学学报(中英文), 2023, 51(10): 1359-1372. doi: 10.1016/S1872-5813(23)60359-7
CHU Mo, GAO Min, YANG Yan-bo, HU Jia-bao, LÜ Fei-yong, WANG Hao-yang, WANG Liang-liang. Pyrolysis magnetization of low-rank coal and distribution characteristics of sulfur and heavy metals in char products[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1359-1372. doi: 10.1016/S1872-5813(23)60359-7
Citation: CHU Mo, GAO Min, YANG Yan-bo, HU Jia-bao, LÜ Fei-yong, WANG Hao-yang, WANG Liang-liang. Pyrolysis magnetization of low-rank coal and distribution characteristics of sulfur and heavy metals in char products[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1359-1372. doi: 10.1016/S1872-5813(23)60359-7

低阶煤热解磁化及其半焦产物中硫和重金属分布特性

doi: 10.1016/S1872-5813(23)60359-7
基金项目: 国家自然科学基金(51974323)和国家重点研发计划(2019YFC1904304)资助
详细信息
    通讯作者:

    Tel: 010-62331863, E-mail: 13693396816@163.com

  • 中图分类号: TQ536

Pyrolysis magnetization of low-rank coal and distribution characteristics of sulfur and heavy metals in char products

Funds: The project was supported by the National Natural Science Foundation of China (51974323) and National Key Research and Development Projects (2019YFC1904304).
  • 摘要: 用热解和磁选相结合的方法,研究了不同热解温度下甘肃褐煤和山西次烟煤热解磁化及其半焦产物中硫和重金属的分布特性。通过ICP-OES和ICP-MS分别对半焦中的硫和重金属元素含量进行分析测定,利用XRD和SEM-EDS对半焦的矿物组成和表观形貌进行了表征。结果表明,甘肃褐煤和山西次烟煤在最佳条件下的磁选脱硫率最高可以分别达到52.37%和17.54%;这与黄铁矿在热解过程中的相变行为有关。山西次烟煤半焦的磁选脱硫率低于甘肃褐煤半焦主要是由于其伴生矿物质的赋存包裹和有机质对黄铁矿在热解过程中的转化产生了影响。Ni和Cr与Fe-S矿物的亲和性较强,其随硫更多地富集到磁性半焦中;在800 ℃时,甘肃煤和山西煤磁性半焦中Cr含量分别比非磁性半焦中多8698.25和32327.47 µg/g。低阶煤热解磁化及其半焦产物中硫和重金属的分布特性为脱除煤中硫和重金属元素提供了数据支撑和新思路。
  • FIG. 2695.  FIG. 2695.

    FIG. 2695.  FIG. 2695.

    图  1  热解流程示意图

    Figure  1  Pyrolysis flowchart

    图  2  各形态硫含量的测定方法

    Figure  2  Methods for determining sulfur content in each form

    图  3  煤热解半焦中重金属元素逐级化学提取法流程示意图

    Figure  3  Flow diagram of stepwise chemical extraction of heavy metal elements in coal pyrolysis char

    图  4  热解温度与磁性半焦产率的变化

    Figure  4  Relationship between pyrolysis temperature and magnetic char yield

    图  5  不同热解温度下半焦的XRD谱图

    Figure  5  XRD spectra of char at different pyrolysis temperatures A:Pyrrhotite;P:Pyrite;Q:SiO2;T:Troilite

    图  6  GS 500 ℃半焦的SEM照片和EDS谱图

    Figure  6  SEM and EDS images of GX 500 ℃ char

    (a): Magnetic char; (b): Non-magnetic char

    图  8  不同热解温度下半焦的全硫含量

    Figure  8  Total sulfur content of char at different pyrolysis temperatures

    图  7  SX500 ℃半焦的SEM照片和EDS谱图

    Figure  7  SEM and EDS images of SX 500 ℃ char

    (a): Magnetic char; (b): Non-magnetic char

    图  9  不同热解温度下的磁选脱硫率

    Figure  9  Desulfurization rate of magnetic separation at different pyrolysis temperatures

    图  10  不同热解温度下非磁性及磁性半焦的形态硫分析。

    Figure  10  Morphological sulfur analysis of non-magnetic and magnetic chars at different pyrolysis temperatures So: Organic sulfur;Sp: Pyrite sulfur;Ss: Sulfate sulfur

    图  11  不同热解温度下磁性半焦和非磁性半焦重金属元素的含量分布

    Figure  11  Content distribution of heavy metal elements in magnetic and non-magnetic chars at different pyrolysis temperatures

    图  12  GS不同热解温度半焦中重金属元素的提取率

    Figure  12  Extraction rate of heavy metal elements in char at different pyrolysis temperatures of GS

    图  13  SX不同热解温度半焦中重金属元素的提取率

    Figure  13  Extraction rate of heavy metal elements in char at different pyrolysis temperatures of SX

    图  14  GS 500 ℃磁性半焦SEM-EDS照片(面扫描)

    Figure  14  SEM-EDS diagram of magnetic char at 500 °C of GS (area scan)

    图  15  SX 500 ℃磁性半焦SEM-EDS照片(面扫描)

    Figure  15  SEM-EDS diagram of magnetic char at 500 °C of SX (area scan)

    表  1  GS和SX的工业分析、元素分析和硫形态分析

    Table  1  Industrial analysis, elemental analysis and sulfur form analysis of GS and SX

    CoalIndustrial analysis w/%Elemental analysis w/%Sulfur form wad/%
    MadAadVdafFCdaf aCdafHdafOdaf aNdafSt,adSsSpSoa
    GS9.6922.9646.6853.3270.025.7819.682.011.690.450.231.01
    SX3.0944.4939.7660.2469.275.768.851.077.890.064.283.55
    note: ad: air drying base; daf: dry without ash-based; Ss: Sulphate sulfur; Sp: Pyrite sulfur; So: Organic sulfur
    下载: 导出CSV

    表  2  煤样的灰分分析

    Table  2  Ash analysis of coal samples

    CoalContent/%
    SiO2Al2O3Fe2O3CaOMgOTiO2SO3K2ONa2OP2O5Other
    GS47.7519.918.507.241.381.399.712.150.920.350.70
    SX41.4235.2418.920.230.083.400.140.2100.220.13
    下载: 导出CSV

    表  3  不同热解温度下磁性和非磁性半焦中重金属元素含量的差值

    Table  3  Difference between the content of heavy metal elements in magnetic and non-magnetic chars at different pyrolysis temperatures

    Types of heavy metalAC /(µg·g−1)
    GSSX
    400 ℃600 ℃800 ℃600 ℃800 ℃
    Co19.3312.5357.9932.18106.23
    Mo12.554.2231.1384.79114.57
    Cd0.061.790.450.310.05
    Sn3.51−12.423.536.524.13
    V17.230.2830.5074.78104.11
    Pb20.7665.183.7658.0918.68
    Cu33.3428.5382.67105.73170.16
    As210.42159.01139.6454.0559.16
    Zn24.8160.05−97.2950.98−66.68
    Ni1791.29854.218459.472526.2611608.49
    Mn1990.321784.111002.256472.12−1105.22
    Cr3516.631282.538698.256728.4032327.47
    下载: 导出CSV
  • [1] U. S. Energy Information Administration. International energy outlook 2021[EB/OL]. www. eia. gov/outlooks/ieo, 2021.
    [2] 中华人民共和国国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[M]. 北京: 中国统计出版社, 2020.

    National Bureau of Statistics of the People's Republic of China. Statistical Communique of 2020 National Economic and Social Development of the People's Republic of China[M]. Beijing: China Statistics Press, 2020.
    [3] 许洁. 典型煤灰与混合灰熔融特性及粘温特性研究[D]. 上海: 华东理工大学, 2015.

    XU Jie. Melting and viscosity-temperature characteristics of typical coal ash and mixed ash[D]. Shanghai: East China University Science and Technology, 2015.
    [4] 李安. 浅析低阶煤提质技术现状及发展[J]. 石化技术,2018,25(2):281.

    LI An. The present situation and development of quality improvement technology of low-rank coal are analyzed[J]. Petrochem Ind Technol,2018,25(2):281.
    [5] 王顺庆. 我国的生态危险管理与生态保险[J]. 南京财经大学学报,2005,(1):55−59.

    WANG Shun-qing. Ecological danger management and ecological insurance in our country[J]. J Nanjing Univ Finance Economics,2005,(1):55−59.
    [6] SAIKIA J, SAIKIA P, BORUAH R, SAIKIA B. Ambient air quality and emission characteristics in and around a non-recovery type coke oven using high sulphur coal[J]. Sci Total Environ,2015,530−531:304−313. doi: 10.1016/j.scitotenv.2015.05.109
    [7] 赵跃武, 邱宏伟, 洪涛. 煤中硫的迁移规律研究[J]. 中国新技术新产品,2012,(3):154.

    ZHAO Yue-wu, QIU Hong-wei, HONG Tao. Study on the transfer law of sulfur in coal[J]. China New Technol New Prod,2012,(3):154.
    [8] 孙成功, 李保庆, SNAPE COLIN E. 煤中有机硫形态结构和热解过程硫变迁特性的研究[J]. 燃料化学学报,1997,25(4):71−75.

    SUN Cheng-gong, LI Bao-qing, SNAPE COLIN E. Study on the morphological structure of organic sulfur in coal and the transition characteristics of sulfur during pyrolysis[J]. J Fuel Chem Technol,1997,25(4):71−75.
    [9] 秦建华. 选煤是当前我国煤炭脱硫的首选方法[J]. 选煤技术,2000,(1):10−12.

    QIN Jian-hua. Coal preparation is the preferred method of coal desulphurization[J]. Coal Prep Technol,2000,(1):10−12.
    [10] 张鸿波, 边炳鑫, 康华. 当前我国煤炭脱硫方法的应用[J]. 国外金属矿选矿,2002,(8):20−22.

    ZHANG Hong-bo, BIAN Bing-xin, KANG Hua. The application of current coal desulphurization method[J]. Foreign Metal Ore Dress,2002,(8):20−22.
    [11] 马涛. 关于煤中脱硫法的探讨[J]. 内蒙古煤炭经济,2001,(1):85−88.

    MA Tao. Discussion on desulphurization in coal[J]. Inner Mongolia Coal Economy,2001,(1):85−88.
    [12] 莫海燕. 低阶煤高效清洁分质利用问题研究[J]. 化工设计通讯,2022,48(4):175−177.

    MO Hai-yan. Study on the high-efficiency, clean and quality utilization of low-rank coal[J]. Chem Eng Des Commun,2022,48(4):175−177.
    [13] SHEN Y, HU Y, WANG M, BAO W, CHANG L, XIE K. Speciation and thermal transformation of sulfur forms in high-sulfur coal and its utilization in coal-blending coking process: A review[J]. Chin J Chem Eng,2021,35:70−82. doi: 10.1016/j.cjche.2021.04.007
    [14] CUI T, ZHOU Z, DAI Z, LI C, YU G, WANG F. Primary fragmentation characteristics of coal particles during rapid pyrolysis[J]. Energy Fuels,2015,29(10):6231−6241.
    [15] 李梅, 杨俊和, 夏红波, 常海洲, 孙慧. 典型炼焦高硫煤热解过程中硫迁移规律研究[J]. 煤炭转化,2013,36(4):41−45.

    LI Mei, YANG Jun-he, XIA Hong-bo, CHANG Hai-zhou, SUN Hui. Study on sulfur migration law during pyrolysis of typical coking high-sulfur coal[J]. Coal Convers,2013,36(4):41−45.
    [16] 李梅, 杨俊和, 张启锋, 夏红波, 常海洲, 孙慧. 高硫煤镜质组热解过程中结构变化及有机硫形态变迁规律研究[J]. 燃料化学学报.,2014,42(2):138−145.

    LI Mei, YANG Jun-he, ZHANG Qi-feng, XIA Hong-bo, CHANG Hai-zhou, SUN Hui. Structure change and organic sulfur forms transformation during pyrolysis of high-sulfur vitrinite[J]. J Fuel Chem Technol,2014,42(2):138−145.
    [17] 左伟, 骆振福, 吴万昌, 陈尚龙, 郭进, 刘小军, 籍永华. 高硫煤的干法分选技术[J]. 煤炭加工与综合利用,2009,(6):17−21.

    ZUO Wei, LUO Zhen-fu, WU Wan-chang, CHEN Shang-long, GUO Jin, LIU Xiao-jun, JI Yong-hua. Dry separation technology of high sulfur coal[J]. Coal Process Compr Util,2009,(6):17−21.
    [18] 王东路, 李勇. 高梯度磁选脱硫试验研究[J]. 山东电力技术,2004,(3):7−11.

    WANG Dong-lu, LI Yong. Experimental study on desulfurization by high gradient magnetic separation[J]. Shandong Electric Power Technol,2004,(3):7−11.
    [19] M S CELIK, I Y. A new physical process for desulfurization of low-rank coals[J]. Fuel,2000,79:1665−1669. doi: 10.1016/S0016-2361(00)00013-2
    [20] 刘振环. 低温干燥/热解预处理强化低阶煤干法磁选研究[D]. 徐州: 中国矿业大学, 2016.

    LIU Zhen-huan. Study on enhancement of dry magnetic Separation of low rank coal by low temperature drying/pyrolysis pretreatment[D]. Xuzhou: China University of Mining and Technology, 2016.
    [21] RENDA D, ONAL G, MUSTAFAEV I. Consecutive thermomagnetic beneficiation of Turkish lignites[J]. Fuel,2001,80(5):641−644. doi: 10.1016/S0016-2361(00)00144-7
    [22] 田冲. 煤中痕量元素与矿物关联性及其排放特性的研究[D]. 武汉: 华中科技大学, 2014.

    TIAN Chong. Study on the correlation and emission characteristics of Trace elements and Minerals in coal[D]. Wuhan: Huazhong University of Science and Technology, 2014.
    [23] 段飘飘. 西南地区高硫煤有害元素地球化学特征及其洗选分配规律[D]. 徐州: 中国矿业大学, 2017.

    DUAN Piao-piao. Geochemical characteristics and distribution rules of harmful elements in high sulfur coal in Southwest China[D]. Xuzhou: China University of Mining and Technology, 2017.
    [24] YANG Y, CHU M, GAO M, JIA C, ZHOU L, CHANG Z. The effect of strengthening thermal fragmentation by rotary kiln on sulfur distribution of fragmentation char with low-rank coal[J]. Fuel,2022,323:124444. doi: 10.1016/j.fuel.2022.124444
    [25] YAN J, BAI Z, ZHAO H, BAI J, LI W. Inappropriateness of the standard method in sulfur form analysis of char from coal pyrolysis[J]. Energy Fuels,2012,26(9):5837−5842.
    [26] 李沙. 煤粉燃前强磁选净化机理及试验研究[D]. 河南: 河南理工大学, 2011.

    LI Sha. Study on purification mechanism and experiment of pulverized coal by high intensity magnetic separation before burning[D]. Henan: Henan Polytechnic University, 2011.
    [27] GUO R, YANG J, LIU D, LIU Z. Transformation behavior of trace elements during coal pyrolysis[J]. Fuel Process Technol,2002,77:137−143.
    [28] 王丽. 超低排放机组中汞、砷和硒等重金属的迁移特性研究[D]. 杭州: 浙江大学, 2018.

    WANG Li. Study on migration characteristics of heavy metals such as mercury, Arsenic and selenium in ultra-low emission units[D]. Hangzhou: Zhejiang University, 2018.
    [29] SPEARS D A. The determination of trace element distributions in coals using sequential chemical leaching—A new approach to an old method[J]. Fuel,2013,114:31−37. doi: 10.1016/j.fuel.2012.09.028
    [30] 王灿, 焦红光, 陈清如, 李沙, 路阳. 低温热解强化煤粉磁选脱硫效果的实验研究[J]. 煤炭转化,2009,32(3):73−77.

    WANG Can, JIAO Hong-guang, CHEN Qing-ru, LI Sha, LU Yang. Experimental study on the effect of low temperature pyrolysis on desulfurization by magnetic separation of pulverized coal[J]. Coal Convers,2009,32(3):73−77.
    [31] ZHAO H, BAI Z, BAI J, GUO Z, KONG L, LI W. Effect of coal particle size on distribution and thermal behavior of pyrite during pyrolysis[J]. Fuel,2015,148:145−151. doi: 10.1016/j.fuel.2015.01.104
    [32] 杨晓杰, 丁述理. 京西煤系高岭石的铁占位[J]. 河北建筑科技学院学报(自然科学版),2005,22(3):73−75.

    YANG Xiao-jie, DING Shu-li. Study on the kaolin in coal measures of West Beijing by Mossbauer spectroscopy[J]. J Hebei Inst Architectural Sci Technol,2005,22(3):73−75.
    [33] XU F, CHU M, CHANG Z, GU Z, SUN X. Sulfur release and transformation during the pyrolysis of lignite with different particle sizes[J]. J Anal Appl Pyrolysis,2021,156:105162. doi: 10.1016/j.jaap.2021.105162
    [34] GUO R, YANG J, LIU D, LIU Z. The fate of As, Pb, Cd, Cr and Mn in a coal during pyrolysis[J]. J Anal Appl Pyrolysis,2003,70(2):555−562. doi: 10.1016/S0165-2370(03)00025-1
    [35] FINKELMAN R B. Modes of occurrence of potentially hazardous elements in coal: Levels of confidence[J]. Fuel Process Technol,1994,39(1/3):21−34. doi: 10.1016/0378-3820(94)90169-4
    [36] SEKINE Y, SAKAJIRI K, KIKUCHI E, MATSUKATA M. Release behavior of trace elements from coal during high-temperature processing[J]. Powder Technol,2008,180(1/2):210−215. doi: 10.1016/j.powtec.2007.03.012
    [37] 李扬. 煤气化过程中微量元素的迁移转化及高温脱除的实验研究[D]. 武汉: 华中科技大学, 2011.

    LI Yang. Experimental study on migration, transformation and high-temperature removal of trace elements during coal gasification[D]. Wuhan: Huazhong University of Science and Technology, 2011.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  356
  • HTML全文浏览量:  156
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 修回日期:  2023-03-20
  • 录用日期:  2023-03-21
  • 网络出版日期:  2023-04-13
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回