留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wet removal of elemental mercury by acid-assisted electrochemical oxidation method

ZHANG Qian-qian ZHANG An-chao MENG Fan-mao LIU Yan-wen SUN Zhi-jun LI Hai-xia ZHENG Hai-kun

张倩倩, 张安超, 孟凡茂, 刘艳雯, 孙志君, 李海霞, 郑海坤. 酸液辅助电化学氧化法脱除单质汞性能研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1496-1505. doi: 10.1016/S1872-5813(23)60371-8
引用本文: 张倩倩, 张安超, 孟凡茂, 刘艳雯, 孙志君, 李海霞, 郑海坤. 酸液辅助电化学氧化法脱除单质汞性能研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1496-1505. doi: 10.1016/S1872-5813(23)60371-8
ZHANG Qian-qian, ZHANG An-chao, MENG Fan-mao, LIU Yan-wen, SUN Zhi-jun, LI Hai-xia, ZHENG Hai-kun. Wet removal of elemental mercury by acid-assisted electrochemical oxidation method[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1496-1505. doi: 10.1016/S1872-5813(23)60371-8
Citation: ZHANG Qian-qian, ZHANG An-chao, MENG Fan-mao, LIU Yan-wen, SUN Zhi-jun, LI Hai-xia, ZHENG Hai-kun. Wet removal of elemental mercury by acid-assisted electrochemical oxidation method[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1496-1505. doi: 10.1016/S1872-5813(23)60371-8

酸液辅助电化学氧化法脱除单质汞性能研究

doi: 10.1016/S1872-5813(23)60371-8
详细信息
  • 中图分类号: X511

Wet removal of elemental mercury by acid-assisted electrochemical oxidation method

Funds: The project was supported by the National Natural Science Foundation of China (51676064), the Program for Science & Technology Innovation Talents in Universities of Henan Province (19HASTIT045) and the Innovative Research Team of Henan Polytechnic University (T2020-3).
More Information
  • 摘要: 以铂片为阴极,氟掺杂二氧化锡(FTO)玻璃为阳极,提出了一种新型酸液辅助电化学氧化法(AEO)脱除单质汞(Hg0)技术,探讨了酸类型、硝酸浓度、外加直流电压、电解质类型、SO2、NO和O2对脱汞效率的影响。研究结果表明,随着直流电压和硝酸液浓度的升高,脱汞效率逐渐上升;硝酸浓度增加至0.15 mol/L后,脱汞效率保持不变;SO2和NO抑制了AEO体系中Hg0的去除,但这种抑制是可逆的。与单独实验条件的脱汞效率相比,在0.1 mol/L硝酸、4 V直流电压的实验条件下,电化学氧化脱汞的效率可达96%,硝酸与直流电压的协同作用起关键作用。基于实验结果,分析了AEO系统中脱除Hg0的机理:在阳极,Hg0被阳极表面氧化反应产生的羟基自由基(OH)氧化去除;在阴极,溶解性氧或吸附在Pt表面的O2经还原反应生成阴离子超氧自由基(${\rm{O}}_2^- $)。在酸性条件下,电子会促进${\rm{O}}_2^- $生成OH。自由基捕获实验表明,${\rm{O}}_2^- $OH是酸液辅助电化学法去除Hg0的主要活性物质。研究有助于开发有效的工业除汞电化学技术和工业废酸的循环再利用。
  • FIG. 2709.  FIG. 2709.

    FIG. 2709.  FIG. 2709.

    Figure  1  Schematic diagram of the electrochemical system for Hg0 removal

    Figure  2  Hg0 removal efficiencies under different experimental conditions (a), the corresponding linear fitted pseudo-first order plots (b), and the synergistic effect of nitric acid and DC voltage on Hg0 removal (c)

    Figure  3  Hg0 removal efficiencies ((a), (c)) and linear fitted pseudo-first order plots ((b), (d)) under various types of acid and different nitric acid concentrations

    Figure  4  Hg0 removal efficiencies under different DC voltages (a) and different electrolytes (b)

    Figure  5  Effects of SO2 (a), NO (b) and O2 (c) on Hg0 removal efficiency

    Figure  6  (a) Effects of different scavengers on the Hg0 removal, (b) Reaction mechanism of AEO process for Hg0 removal

  • [1] LIU Z Y, YANY W, XU W, LIU Y X. Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine[J]. Chem Eng J,2018,339:468−478. doi: 10.1016/j.cej.2018.01.148
    [2] WANG X Q, ZHOU Y N, LI R, WANG L L, TAO L, NING P. Removal of Hg0 from a simulated flue gas by photocatalytic oxidation on Fe and Ce co-doped TiO2 under low temperature[J]. Chem Eng J,2018,360:1530−1541.
    [3] SU Yin-jiao, TENG Yang, ZHANG Kai, LI Li-feng, WANG Peng-cheng, LI Zhen. Migration and transformation of mercury in WFGD slurry from a coal-fired power unit and the effect of additive on mercury stability in gypsum[J]. J Fuel Chem Technol,2021,49(7):1022−1033. ) doi: 10.19906/j.cnki.jfct.2021055
    [4] ZHOU P Y, ZHANG A C, ZHANG D, FENG C X, SU S, ZHANG X M, XIANG J, Chen G Y, WANG Y. Efficient removal of Hg0 from simulated flue gas by novel magnetic Ag2WO4/BiOI/CoFe2O4 photocatalysts[J]. Chem Eng J,2019,373:780−791. doi: 10.1016/j.cej.2019.05.060
    [5] ZHAO Y, HAO R L, GUO Q. A novel pre-oxidation method for elemental mercury removal utilizing a complex vaporized absorbent[J]. J Hazard Mater,2014,280:118−126. doi: 10.1016/j.jhazmat.2014.07.061
    [6] HUANG H, HU H, ANNANUROV S, PEI K Y, CHEN J X, YUAN S C. Interaction among the simultaneous removal of SO2, NO and Hg0 by electrochemical catalysis in K2S2O8[J]. Fuel,2020,260:116323. doi: 10.1016/j.fuel.2019.116323
    [7] GAO Tian, XIAO Ri-hong, CHUAI Xing, XIONG Zhuo, WEI Geng, LI Tie, YANG Kai, LI Guo, ZHAO Yong-chun, ZHANG Jun-ying. Study on mercury emission characteristics of circulating fluidized bed boiler and pulverized coal boiler[J]. J Fuel Chem Technol,2022,50(3):275−282. ) doi: 10.19906/j.cnki.jfct.2021075
    [8] GENG X Z, HU J W, DUAN Y F, TANG H J, HUANG T F, XU Y F, REN S J, LIU M. The effect of mechanical-chemical-brominated modification on physicochemical properties and mercury removal performance of coal-fired by-product[J]. Fuel,2020,260:117041.
    [9] HE C, SHEN B X, CHEN J H, CAI J. Adsorption and oxidation of elemental mercury over Ce-MnOx/TiPILCs[J]. Environ Sci Technol,2014,48:7891−7898. doi: 10.1021/es5007719
    [10] LIU D J, YANG L T, WU J, LI B. Tuning sulfur vacancies in CoS2 via a molten salt approach for promoted mercury vapor adsorption[J]. Chem Eng J,2022,450:137956. doi: 10.1016/j.cej.2022.137956
    [11] ZHANG M Z, WANG J, ZHANG Y H, ZHANG M G, ZHOU Y F, PHOUTTHAVONG T, LIANG P, ZHANG H W. Simultaneous removal of NO and Hg0 in flue gas over Co-Ce oxide modified rod-like MnO2 catalyst: Promoting effect of Co doping on activity and SO2 resistance[J]. Fuel,2020,276:118018. doi: 10.1016/j.fuel.2020.118018
    [12] XU W, HUSSAIN A, LIU Y X. A review on modification methods of adsorbents for elemental mercury from flue gas[J]. Chem Eng J,2018,346:692−711. doi: 10.1016/j.cej.2018.03.049
    [13] ZHANG H W, SUN H M, ZHANG D Y, ZHANG W R, CHEN S J, LI M, LIANG P. Nanoconfinement of Ag nanoparticles inside mesoporous channels of MCM-41 molecule sieve as a regenerable and H2O resistance sorbent for Hg0 removal in natural gas[J]. Chem Eng J,2019,361:139−147. doi: 10.1016/j.cej.2018.12.059
    [14] ZHOU Wen-bo, NIU Sheng-li, WANG Jun, LI Ying, HAN Kui-hua, WANG Yong-zheng, LU Chun-mei, ZHU Ying. Study on the adsorption and oxidation mechanism of mercury by HCl over γ-Fe2O3 catalyst[J]. J Fuel Chem Technol,2021,49(11):1716−1723. ) doi: 10.1016/S1872-5813(21)60098-1
    [15] XIAO Y X, TAN S Q, WANG D L, WU J, JIA T, LIU Q Z, QI Y F, QI X M, HE P, ZHOU M. CeO2/BiOIO3 heterojunction with oxygen vacancies and Ce4 + /Ce3 + redox centers synergistically enhanced photocatalytic removal heavy metal[J]. Appl Surf Sci,2020,530:147116. doi: 10.1016/j.apsusc.2020.147116
    [16] ZHOU C S, SUN L S, ZHANG A C, WU X F, MA C, SU S, HU S, XIANG J. Fe3-xCuxO4 as highly active heterogeneous Fenton-like catalysts toward elemental mercury removal[J]. Chemosphere,2015,125:16−24. doi: 10.1016/j.chemosphere.2014.12.082
    [17] ZHOU Y N, LI R, TAO L, LI R J, WANG X Q, NING P. Solvents mediated-synthesis of 3D-BiOX (X = Cl, Br, I) microspheres for photocatalytic removal of gaseous Hg0 from the zinc smelting flue gas[J]. Fuel,2020,268:117211. doi: 10.1016/j.fuel.2020.117211
    [18] ZHANG M J, YANG G, LIU S, YU J H, LI H Z, ZHANG L W, CHEN Y P, GUO R T, WU T. MoS2 quantum dots based MoS2/HKUST-1 composites for the highly efficient catalytic oxidation of elementary mercury[J]. J Environ Sci,2022,116:163−174. doi: 10.1016/j.jes.2021.08.019
    [19] AN M, YUAN N N, GUO Q J, WEI X Y. Role of CuFe2O4 in elemental mercury adsorption and oxidation on modified bentonite for coal gasification[J]. Fuel,2022,328:125231. doi: 10.1016/j.fuel.2022.125231
    [20] CHENG H Q, WU J, TIAN F G, LIU Q Z, QI X M, LI Q W, PAN W G, LI Z Z, WEI J. Visible-light photocatalytic oxidation of gas-phase Hg0 by colored TiO2 nanoparticle-sensitized Bi5O7I nanorods: Enhanced interfacial charge transfer based on heterojunction[J]. Chem Eng J,2019,360:951−963. doi: 10.1016/j.cej.2018.07.093
    [21] BRILLAS E, MARTINEZ-HUITLE C A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review[J]. Appl Catal B: Environ, 2015, 166–167: 603–643.
    [22] MIN S J, KIM J G, BEAK K. Role of carbon fiber electrodes and carbonate electrolytes in electrochemical phenol oxidation[J]. J Hazard Mater,2020,400:123083. doi: 10.1016/j.jhazmat.2020.123083
    [23] RAJASEKHAR B, NAMBI I M, GOVINDARAJAN S K. Investigating the degradation of nC12 to nC23 alkanes and PAHs in petroleum-contaminated water by electrochemical advanced oxidation process using an inexpensive Ti/Sb-SnO2/PbO2 anode[J]. Chem Eng J,2021,404:125268. doi: 10.1016/j.cej.2020.125268
    [24] NIDHEESH P V, KUMAR A, SYAM BABU D, SCARIA J, SURESH KUMAR M. Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation[J]. Chemosphere,2020,251:126437. doi: 10.1016/j.chemosphere.2020.126437
    [25] ZHOU C S, YANG H M, QI D X, SUN J X, CHEN J M, ZHANG Z Y, MAO L, SONG Z J, SUN L S. Insights into the heterogeneous Hg0 oxidation mechanism by H2O2 over Fe3O4 (0 0 1) surface using periodic DFT method[J]. Fuel,2018,216:513−520. doi: 10.1016/j.fuel.2017.12.004
    [26] LIU Y X, LI Y, XU H, XU J J. Oxidation removal of gaseous Hg0 using enhanced-Fenton system in a bubble column reactor[J]. Fuel,2019,246:358−364. doi: 10.1016/j.fuel.2019.03.018
    [27] CHEN Y F, WU J J, LIU R Z, LIU C Z, LIU L F, LI R L, ZHANG H, PANG J T, LIU D Z. Application of waste acid from phosphogysum dam as an eco-friendly depressant in collophane flotation[J]. J Clean Prod,2020,267:122184. doi: 10.1016/j.jclepro.2020.122184
    [28] ZHOU J, YU Q, HUANG Y, MENG J J, CHEN Y D, NING S Y, WANG X P, WEI Y Z, YIN X B, LIANG J. Recovery of scandium from white waste acid generated from the titanium sulphate process using solvent extraction with TRPO[J]. Hydrometallurgy,2020,195:105398. doi: 10.1016/j.hydromet.2020.105398
    [29] GOVINDAN K, RAJA M, NOEL M, JAMES E J. Degradation of pentachlorophenol by hydroxyl radicals and sulfate radicals using electrochemical activation of peroxomonosulfate, peroxodisulfate and hydrogen peroxide[J]. J Hazard Mater,2014,272:42−51. doi: 10.1016/j.jhazmat.2014.02.036
    [30] MIDASSI S, BEDOUI A, BENSALAH N. Efficient degradation of chloroquine drug by electro-Fenton oxidation: Effects of operating conditions and degradation mechanism[J]. Chemosphere,2020,260:127558. doi: 10.1016/j.chemosphere.2020.127558
    [31] ZHANG Q Q, ZHANG A C, LI H, ZHANG X M, SUN Z J, MEI Y Y, XIANG J, SU S, TAN Z Q, LU H. FeNi3 foam as cathode catalyst in electrocatalytic peroxydisulfate system for enhanced Hg0 removal from simulated flue gas[J]. J Environ Chem Eng,2023,11:109384. doi: 10.1016/j.jece.2023.109384
    [32] SEO B, LEE W H, SA Y J, LEE U, OH H-S, LEE H. Electrochemical oxidation of toluene with controlled selectivity: The effect of carbon anode[J]. Appl Surf Sci,2020,534:147517. doi: 10.1016/j.apsusc.2020.147517
    [33] BENSALAH N, MIDASSI S, AHMAD M I, BEDOUI A. Degradation of hydroxychloroquine by electrochemical advanced oxidation processes[J]. Chem Eng J,2020,402:126279. doi: 10.1016/j.cej.2020.126279
    [34] ZHU Y S, QIU S, DENG F X, MA F, ZHENG Y S. Degradation of sulfathiazole by electro-Fenton using a nitrogen-doped cathode and a BDD anode: Insight into the H2O2 generation and radical oxidation[J]. Sci Total Environ,2020,722:137853. doi: 10.1016/j.scitotenv.2020.137853
    [35] CAO L M, YANG J, XU Y, SUN W, SHEN Q C, ZHOU J C, YANG J. The coupling use of electro-chemical and advanced oxidation to enhance the gaseous elemental mercury removal in flue gas[J]. Sep Purif Technol,2021,257:117883. doi: 10.1016/j.seppur.2020.117883
    [36] SAVIC B G, STANKOVIC D M, ZIVKOVIC S M, OGNJANOVIC M R, TASIC G S, MIHAJLOVIC I J, BRDARIC T P. Electrochemical oxidation of a complex mixture of phenolic compounds in the base media using PbO2-GNRs anodes[J]. Appl Surf Sci,2020,529:147120. doi: 10.1016/j.apsusc.2020.147120
    [37] TAVAN Y, SHANHROKHI M, FARHADI F. Electrochemical oxidative desulfurization for high sulfur content crude gasoil[J]. Sep Purif Technol,2020,248:117117. doi: 10.1016/j.seppur.2020.117117
    [38] CHEN Z Y, XIE G Y, PAN Z C, ZHOU X, LAI W K, ZHENG L, XU Y B. A novel Pb/PbO2 electrodes prepared by the method of thermal oxidation-electrochemical oxidation: Characteristic and electrocatalytic oxidation performance[J]. J Alloy Compd,2021,851:156834. doi: 10.1016/j.jallcom.2020.156834
    [39] GOMEZ J M, GABALDON M G, ABAD J C, MONTANES M T, MESTRE S, HERRANZ V P. Influence of the reactor configuration and the supporting electrolyte concentration on the electrochemical oxidation of Atenolol using BDD and SnO2 ceramic electrodes[J]. Appl Surf Sci,2020,241:116684.
    [40] AHMADPOUR S, TASHKHOURIAN J, HEMMATEENEJAD B. A chemometric investigation on the influence of the nature and concentration of supporting electrolyte on charging currents in electrochemistry[J]. J Electroanalytical Chem, 2020, 871: 114296.
    [41] ZHU X P, NI J R, LAI P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes[J]. Water Res,2009,43:4347−4355. doi: 10.1016/j.watres.2009.06.030
    [42] SOHRABNEJAD-ESKAN I, GORYACHEV A, EXNER K S, KIBLER L A, HENSEN E J M, HOFMANN J P, OVER H. Temperature-dependent kinetic studies of the chlorine evolution reaction over RuO2 (110) model electrodes[J]. ACS Catal,2017,7:2403−2411. doi: 10.1021/acscatal.6b03415
    [43] DENG Y, ZHU X, CHEN N, FENG C P, WANG H S, KUANG P J, HU W W. Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme[J]. Sci Total Environ,2020,745:140768. doi: 10.1016/j.scitotenv.2020.140768
    [44] ZHANG Y, LI J H, BAI J, LI L S, CHEN S, ZHOU T S, WANG J C, XIA L G, XU Q J, ZHOU B X. Extremely efficient decomposition of ammonia N to N2 using ClO from reactions of HO and HOCl generated in situ on a novel bifacial photoelectroanode[J]. Environ Sci Technol,2019,53:6945−6953. doi: 10.1021/acs.est.9b00959
    [45] ZHANG A C, ZHANG L X, LU H, CHEN G Y, LIU Z C, XIANG J, SUN L S. Facile synthesis of ternary Ag/AgBr-Ag2CO3 hybrids with enhanced photocatalytic removal of elemental mercury driven by visible light[J]. J Hazard Mater,2016,314:78−87. doi: 10.1016/j.jhazmat.2016.04.032
    [46] LIN H, ZHANG H, HOU L W. Degradation of C. I. Acid Orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process[J]. J Hazard Mater,2014,276:182−191. doi: 10.1016/j.jhazmat.2014.05.021
  • 加载中
图(7)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  58
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-05
  • 修回日期:  2023-03-06
  • 录用日期:  2023-03-31
  • 网络出版日期:  2023-06-14
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回