留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe掺杂NiSe@NiS复合材料电子调制和界面协同促进析氧性能研究

阴雪利 代小平

阴雪利, 代小平. Fe掺杂NiSe@NiS复合材料电子调制和界面协同促进析氧性能研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1470-1477. doi: 10.1016/S1872-5813(23)60374-3
引用本文: 阴雪利, 代小平. Fe掺杂NiSe@NiS复合材料电子调制和界面协同促进析氧性能研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1470-1477. doi: 10.1016/S1872-5813(23)60374-3
YIN Xue-li, DAI Xiao-ping. Electronic modulation and synergistic effect on Fe-doped NiSe@NiS composites to improve oxygen evolution performance[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1470-1477. doi: 10.1016/S1872-5813(23)60374-3
Citation: YIN Xue-li, DAI Xiao-ping. Electronic modulation and synergistic effect on Fe-doped NiSe@NiS composites to improve oxygen evolution performance[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1470-1477. doi: 10.1016/S1872-5813(23)60374-3

Fe掺杂NiSe@NiS复合材料电子调制和界面协同促进析氧性能研究

doi: 10.1016/S1872-5813(23)60374-3
基金项目: 国家自然科学基金(22278425)资助
详细信息
    通讯作者:

    E-mail:daixp@cup.edu.cn

  • 中图分类号: O646

Electronic modulation and synergistic effect on Fe-doped NiSe@NiS composites to improve oxygen evolution performance

Funds: The project was supported by the National Natural Science Foundation of China (22278425)
  • 摘要: 本研究采用溶剂热法,在泡沫镍(NF)基底上原位合成出Fe掺杂的硒化镍和硫化镍复合材料(Fe-NiSe@NiS/NF)。得益于Fe掺杂优化的电子结构、NiSe和NiS间的协同效应以及高效的电荷转移速率,Fe-NiSe@NiS/NF在1 mol/L KOH溶液中表现出优异的OER性能。在过电位为330 mV时可实现电流密度150 mA/cm2,且电压在稳定40 h后没有发生显著改变。
  • FIG. 2706.  FIG. 2706.

    FIG. 2706.  FIG. 2706.

    图  1  (a)泡沫镍,(b)Fe-NiSe/NF,(c)NiSe@NiS/NF,(d)Fe-NiSe@NiS/NF的SEM照片

    Figure  1  SEM images of (a) NF, (b) Fe-NiSe/NF, (c) NiSe@NiS/NF and (d) Fe-NiSe@NiS/NF

    图  2  Fe-NiSe@NiS/NF的(a)TEM照片,(b)高倍TEM照片,((c)−(e))HAADF-STEM照片和面扫mapping照片

    Figure  2  (a) TEM image, (b) HR-TEM image, ((c)−(e)) elemental mapping image of Fe-NiSe@NiS/NF

    图  3  (a)XRD谱图;(b)催化剂的XPS全谱图;(c)Ni 2p;(d)Fe 2p;(e)Se 3d;(f)S 2p

    Figure  3  (a) XRD patterns, (b) full spectrum, (c) Ni 2p, (d) Fe 2p, (e) Se 3d, (f) S 2p

    图  4  (a)极化曲线;(b)塔菲尔斜率;(c)奈奎斯特曲线;(d)Fe-NiSe@NiS/NF稳定性测试

    Figure  4  (a) LSV curves, (b) Tafel plots, (c) Nyquist plots, (d) stability test of Fe-NiSe@NiS/NF

    图  5  在特定电压范围(0.90224 –1.0224 V vs. RHE)内不同扫描速率下的CV曲线:(a)NiS/NF;(b)Fe-NiSe/NF;(c)NiSe@NiS/NF;(d)Fe-NiSe@NiS/NF;(e)双电层电容;(f)基于ECSA的极化曲线

    Figure  5  CV curves at the potential of 0.9224 –1.0224 V vs RHE with different scan rates of (a) NiS/NF, (b) Fe-NiSe/NF, (c) NiSe@NiS/NF, (d) Fe-NiSe@NiS/NF, (e) Measured capacitive currents, (f) Normalized LSV curves based on ECSA for NiS/NF, Fe-NiSe/NF,NiSe@NiS/NF and Fe-NiSe@NiS/NF

    图  6  不同铁含量的Fe-NiSe@NiS/NF的(a)极化曲线;(b)奈奎斯特曲线;((c)–(e))在特定电压范围(0.9224 –1.0224 V vs. RHE)内不同扫描速率下的CV曲线;(f)双电层电容

    Figure  6  (a) LSV curves, (b) Nyquist plots, ((c)–(e)) CV curves at the potential of 0.9024 –1.0024 V vs. RHE with different scan rates (20–100 mV/s) on Fe-NiSe@NiS/NF with different Fe content, (f) Measured capacitive currents

    表  1  ICP测试

    Table  1  Results of ICP

    CatalystICP-MS w/%
    NiFe
    Fe-NiSe@NiS/NF-147.281.93
    Fe-NiSe@NiS/NF-341.354.61
    Fe-NiSe@NiS/NF-539.478.03
    下载: 导出CSV
  • [1] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature,2012,448:294−303.
    [2] JIAO Y, ZHENG Y, JARONIEC M, QIAO S Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chem Soc Rev,2015,44(8):2060−2086. doi: 10.1039/C4CS00470A
    [3] WU Z P, LU X F, ZANG S Q, LOU X W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction[J]. Adv Funct Mater,2020,30(15):1910274. doi: 10.1002/adfm.201910274
    [4] LI X, GUAN B Y, GAO S, LOU X W. A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction[J]. Energy Environ Sci,2019,12(2):648−655. doi: 10.1039/C8EE02779J
    [5] KASIAN O, GROTE J P, GEIGER S, CHEREVKO S, MAYRHOFER K J J. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium[J]. Angew Chem Int Ed,2018,57(9):2488−2491. doi: 10.1002/anie.201709652
    [6] ZHANG H, LIU Y, CHEN T, ZHANG J, ZHANG J, LOU X W D. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-Doped carbon matrix[J]. Adv Mater,2019,31(48):1904548. doi: 10.1002/adma.201904548
    [7] SUEN N T, HUNG S F, QUAN Q, ZHANG N, XU Y J, CHEN H M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chem Soc Rev,2017,46(2):337−365. doi: 10.1039/C6CS00328A
    [8] SHI X, KEY J, JI S, LINKOV V, LIU F, WANG H, GAI H, WANG R. Ni(OH)2 nanoflakes supported on 3D Ni3 Se2 nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery[J]. Small,2019,15(29):1802861. doi: 10.1002/smll.201802861
    [9] ZHU M, ZHANG D, LU Q, YAN Y, ZHU K, YE K, YAN J, CAO D, WANG Q, HUANG X, WANG G. Hollow hexagonal NiSe-Ni3Se2 anchored onto reduced graphene oxide as efficient electrocatalysts for hydrogen evolution in wide-pH range[J]. Int J Hydrogen Energy,2021,46(39):20524−20533. doi: 10.1016/j.ijhydene.2021.03.170
    [10] NIE F, LI Z, DAI X, YIN X, GAN Y, YANG Z, WU B, REN Z, CAO Y, SONG W. Interfacial electronic modulation on heterostructured NiSe@CoFe LDH nanoarrays for enhancing oxygen evolution reaction and water splitting by facilitating the deprotonation of OH to O[J]. Chem Eng J,2022,431:134080. doi: 10.1016/j.cej.2021.134080
    [11] CHEN Y, REN Z, FU H, ZHANG X, TIAN G, FU H. NiSe-Ni0.85Se heterostructure nanoflake arrays on carbon paper as efficient electrocatalysts for overall water splitting[J]. Small,2018,14(25):1800763. doi: 10.1002/smll.201800763
    [12] GUO K, WANG Y, YANG S, HUANG J, ZOU Z, PAN H, SHINDE P S, PAN S, HUANG J, XU C. Bonding interface boosts the intrinsic activity and durability of NiSe@Fe2O3 heterogeneous electrocatalyst for water oxidation[J]. Sci Bull,2021,66(1):52−61. doi: 10.1016/j.scib.2020.06.003
    [13] BAO W, YANG C, AI T, ZHANG J, ZHOU L, LI Y, WEI X, ZOU X, WANG Y. Modulating interfacial charge distribution of NiSe nanoarrays with NiFe-LDH nanosheets for boosting oxygen evolution reaction[J]. Fuel,2023,332:126227. doi: 10.1016/j.fuel.2022.126227
    [14] TANG C, ZHANG R, LU W, HE L, JIANG X, ASIRI A M, SUN X. Fe-doped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation[J]. Adv Mater,2017,29(2):126227.
    [15] WU Z, ZOU Z, HUANG J, GAO F. Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting[J]. J Catal,2018,358:243−252. doi: 10.1016/j.jcat.2017.12.020
    [16] TIAN Z, LIU Y, XU Q, SHI Y, MA C, PENG B, LIU G, YANG J, ZHENG W. Fe doped NiSe2 nanoarrays to boost electrocatalytic oxygen evolution reaction[J]. Electrochimica Acta,2022,425:140711. doi: 10.1016/j.electacta.2022.140711
    [17] YIN X, DAI X, NIE F, REN Z, YANG Z, GAN Y, WU B, CAO Y, ZHANG X. Electronic modulation and proton transfer by iron and borate co-doping for synergistically triggering the oxygen evolution reaction on a hollow NiO bipyramidal prism[J]. Nanoscale,2021,13(33):14156−14165. doi: 10.1039/D1NR03500B
    [18] LU C, YAN Y, ZHAI T, FAN Y, ZHOU W. 2-nm-thick NiCo LDH@NiSe single‐crystal nanorods grown on Ni foam as integrated electrode with enhanced areal capacity for supercapacitors[J]. Batteries Supercaps,2020,3:534−540.
    [19] JEGHAN S M N, KIM D, LEE Y, KIM M, LEE G. Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics[J]. Appl Catal B: Environ,2022,308:121221.
    [20] ZOU Z, WANG X, HUANG J, WU Z, GAO F. An Fe-doped nickel selenide nanorod/nanosheet hierarchical array for efficient overall water splitting[J]. J Mater Chem A,2019,7(5):2233−2241. doi: 10.1039/C8TA11072G
    [21] CHANG K, TRAN D T, WANG J, KIM N H, LEE J H. A 3D hierarchical network derived from 2D Fe-doped NiSe nanosheets/carbon nanotubes with enhanced OER performance for overall water splitting[J]. J Mater Chem A,2022,10(6):3102−3111. doi: 10.1039/D1TA07393A
    [22] FANG L, LI W, GUAN Y, FENG Y, ZHANG H, WANG S, WANG Y. Tuning unique peapod-like Co(SxSe1−x)2 Nanoparticles for efficient overall water splitting[J]. Adv Funct Mater,2017,27(24):1701008. doi: 10.1002/adfm.201701008
    [23] YANG Y, KANG Y, ZHAO H, DAI X, CUI M, LUAN X, ZHANG X, NIE F, REN Z, SONG W. An interfacial electron transfer on tetrahedral NiS2 /NiSe2 heterocages with dual-phase synergy for efficiently triggering the oxygen evolution reaction[J]. Small,2020,16(1):1905083. doi: 10.1002/smll.201905083
    [24] MERKI D, FIERRO S, VRUBEL H, HU X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water[J]. Chem Sci,2011,2(7):1262−1267. doi: 10.1039/C1SC00117E
    [25] LV J, CHENG Y, LIU W, QUAN B, LIANG X, JI G, DU Y. Achieving better impedance matching by a sulfurization method through converting Ni into NiS/Ni3S4 composites[J]. J Mater Chem C,2018,6(7):1822−1828. doi: 10.1039/C7TC05503J
    [26] LIANG H, GANDI A N, ANJUM D H, WANG X, SCHWINGENSCHLOGL U, ALSHAREEF H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting[J]. Nano Lett,2016,16(12):7718−7725. doi: 10.1021/acs.nanolett.6b03803
    [27] CHEN S, KANG Z, HU X, ZHANG X, WANG H, XIE J, ZHENG X, YAN W, PAN B, XIE Y. Delocalized spin states in 2D atomic layers realizing enhanced electrocatalytic oxygen evolution[J]. Adv Mater,2017,29(30):1701687. doi: 10.1002/adma.201701687
    [28] DAI X, LI Z, MA Y, LIU M, DU K, SU H, ZHUO H, YU L, SUN H, ZHANG X. Metallic cobalt encapsulated in bamboo-like and nitrogen-rich carbonitride nanotubes for hydrogen evolution reaction[J]. ACS Appl Mater Interfaces,2016,8(10):6439−6448. doi: 10.1021/acsami.5b11717
    [29] WANG P, PU Z, LI W, ZHU J, ZHANG C, ZHAO Y, MU S. Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting[J]. J Catal,2019,377:600−608. doi: 10.1016/j.jcat.2019.08.005
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  75
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 修回日期:  2023-06-05
  • 录用日期:  2023-06-06
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回