留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti掺杂CeO2纳米片负载Pd催化剂催化醇类氧化:界面位点的催化作用

雷丽军 范薇 侯封校 王月清 孙川 张翼

雷丽军, 范薇, 侯封校, 王月清, 孙川, 张翼. Ti掺杂CeO2纳米片负载Pd催化剂催化醇类氧化:界面位点的催化作用[J]. 燃料化学学报(中英文), 2023, 51(7): 1007-1017. doi: 10.1016/S1872-5813(23)60375-5
引用本文: 雷丽军, 范薇, 侯封校, 王月清, 孙川, 张翼. Ti掺杂CeO2纳米片负载Pd催化剂催化醇类氧化:界面位点的催化作用[J]. 燃料化学学报(中英文), 2023, 51(7): 1007-1017. doi: 10.1016/S1872-5813(23)60375-5
LEI Li-jun, FAN Wei, HOU Feng-xiao, WANG Yue-qing, SUN Chuan, ZHANG Yi. Ti doped CeO2 nanosheets supported Pd catalyst for alcohol oxidation: Catalysis of interfacial sites[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 1007-1017. doi: 10.1016/S1872-5813(23)60375-5
Citation: LEI Li-jun, FAN Wei, HOU Feng-xiao, WANG Yue-qing, SUN Chuan, ZHANG Yi. Ti doped CeO2 nanosheets supported Pd catalyst for alcohol oxidation: Catalysis of interfacial sites[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 1007-1017. doi: 10.1016/S1872-5813(23)60375-5

Ti掺杂CeO2纳米片负载Pd催化剂催化醇类氧化:界面位点的催化作用

doi: 10.1016/S1872-5813(23)60375-5
基金项目: 山西省基础研究计划(202103021223178,202103021224217)资助
详细信息
    通讯作者:

    Tel: 0351-3569476, E-mail: leiljspur@163.com

  • 中图分类号: O643

Ti doped CeO2 nanosheets supported Pd catalyst for alcohol oxidation: Catalysis of interfacial sites

Funds: The project was supported by the Funded Project of Shanxi Basic Research Program (202103021223178, 202103021224217)
  • 摘要: 本研究通过Ti掺杂以及改变Ti的掺杂量可控制备了表面氧空位浓度不同的CeO2纳米片,将其作为载体负载Pd物种后研究其醇类氧化性能。X射线光电子能谱、拉曼光谱以及X射线吸收谱的表征结果显示,CeO2表面氧空位浓度和Pd2 + 的比例正向相关。醇类氧化评价结果和构效关系研究显示,Pd2 + 比例和表面的Ce3 + 浓度分别与苯甲醇氧化反应的TOF值之间存在较好的线性关系,Pd与CeO2形成的界面位点(Pd–O–Ce)是这类醇氧化催化剂的主要催化位点。本研究有助于认识金属和氧化物载体界面位点的催化作用,从而开发更好的醇氧化催化剂。
  • FIG. 2474.  FIG. 2474.

    FIG. 2474.  FIG. 2474.

    图  1  N-CeO2(a)、N-Ti(2%)CeO2(b)、N-Ti(5%)CeO2(c)和N-Ti(12%)CeO2(d)的扫描电镜照片;N-CeO2(e)、N-Ti(2%)CeO2(f)、N-Ti(5%)CeO2(g)和N-Ti(12%)CeO2(h)的透射电镜照片

    Figure  1  SEM images of (a) N-CeO2, (b) N-Ti(2%)CeO2, (c) N-Ti(5%)CeO2, and (d) N-Ti(12%)CeO2; TEM images of (e) N-CeO2, (f) N-Ti(2%)CeO2, (g) N-Ti(5%)CeO2, and (h) N-Ti(12%)CeO2 Scale bars: ((a)–(d)): 500 nm, ((e)–(h)): 200 nm

    图  2  Pd/N-CeO2(a)、Pd/N-Ti(2%)CeO2(b)、Pd/N-Ti(5%)CeO2(c)和Pd/N-Ti(12%)CeO2(d)的透射电镜照片

    Figure  2  HRTEM images of various Pd/CeO2 catalysts: (a) Pd/N-CeO2, (b) Pd/N-Ti(2%)CeO2, (c) Pd/N-Ti(5%)CeO2, and (d) Pd/N-Ti(12%)CeO2, scale bar 10 nm

    图  3  不同N-CeO2和Pd/N-CeO2催化剂的XRD谱图

    Figure  3  XRD patterns of various N-CeO2 and Pd/N-CeO2 samples

    图  4  不同Pd/N-CeO2催化剂的Ce 3d XPS谱图

    Figure  4  Ce 3d XPS spectra of various Pd/ N-CeO2 catalysts (a): Pd/N-Ti(12%)CeO2; (b): Pd/N-Ti(5%)CeO2; (c): Pd/N-Ti(2%)CeO2; (d): Pd/N-CeO2

    图  5  不同Pd/N-CeO2催化剂的拉曼(a)光谱谱图和Ce3 + 比例(b)柱状图

    Figure  5  Raman spectra (a) and Ce3 + ratio (b) of various Pd/N-CeO2 catalysts

    图  6  不同Pd/CeO2催化剂的Pd 3d XPS谱图

    Figure  6  Pd 3d XPS spectra of various Pd/CeO2 catalysts (a): Pd/N-Ti(12%)CeO2; (b): Pd/N-Ti(5%)CeO2; (c): Pd/N-Ti(2%)CeO2; (d): Pd/N-CeO2

    图  7  不同Pd/N-CeO2催化剂归一化的Pd的k边XANES谱图(a)和傅里叶变换的EXAFS谱图(b)

    Figure  7  Normalized Pd-K edge XANES spectra (a), and Fourier transform magnitudes of the EXAFS spectra (b) of various Pd/ N-CeO2 catalysts

    图  8  苯甲醇转化率随反应时间的关系曲线(a),苯甲醇氧化反应的TOF值(b),TOF值t = 15 min测定

    Figure  8  Conversion of benzyl alcohol over four Pd/N-CeO2 catalysts with reaction time (a), TOFs estimated for the benzyl alcohol oxidation catalyzed by Pd/N-CeO2 catalysts (b), determined at t = 15 min

    图  9  Pd/N-Ti(12%)CeO2和Pd/N-CeO2催化剂动力学数据

    Figure  9  Kinetic data for benzyl alcohol oxidation over Pd/N-Ti(12%)CeO2 and Pd/N-CeO2 (a): reaction orders of benzyl alcohol; (b): Arrhenius plots for benzyl alcohol oxidation

    图  10  Pd/N-Ti(12%)CeO2催化剂的苯甲醇氧化性能的时间关系曲线和热过滤评价

    Figure  10  Evaluation of leaching of Pd/N-Ti(12%)CeO2 catalyst Pd/N-Ti(12%)CeO2 was removed from the system through filtration after reaction for 6 h (the red line)

    图  11  Pd/N-Ti(12%)CeO2催化苯甲醇氧化反应的循环稳定性能

    Figure  11  Evaluation of cyclic stability of Pd/N-Ti(12%)CeO2 for benzyl alcohol oxidation Reaction conditions: 10 mL deionized water, 6.0 mmol substrate, certain amount catalyst (the molar ratio of substrate/Pd was about 2000), 0.5 MPa O2, 90 ℃ for 6 h

    图  12  Pd/N-Ti(12%)CeO2经过十次循环后的TEM照片(a)和XRD谱图(b)

    Figure  12  TEM image (a) and XRD patterns (b) of fresh and used Pd/N-Ti(12%)CeO2 catalyst

    图  13  Pd2 + 比例、Ce3 + 浓度与苯甲醇氧化反应的TOF值之间的构效关系

    Figure  13  Structure-activity relationship between Pd2 + proportion, Ce3 + concentration and TOF of benzyl alcohol oxidation

    图  14  苯甲醇吸附在Pd/N-Ti(12%)CeO2上的红外光谱谱图

    Figure  14  FT-IR spectra for the adsorption of benzyl alcohol on Pd/N-Ti(12%)CeO2

    表  1  N-CeO2载体和Pd/N-CeO2催化剂的物理化学性质

    Table  1  Physicochemical properties of prepared N-CeO2 and Pd/ N-CeO2 samples

    EntrySamplePd loading a w/%Surface areab /(m2·g–1) Crystal sizec /nm Cell parameterd
    1N-CeO276.57.65.447
    2N-Ti(2%)CeO282.77.15.454
    3N-Ti(5%)CeO287.16.75.466
    4N-Ti(12%)CeO290.76.25.472
    5Pd/N-CeO20.9876.27.4
    6Pd/N-Ti(2%)CeO20.9381.37.0
    7Pd/N-Ti(5%)CeO20.9586.36.4
    8Pd/N-Ti(12%)CeO20.9689.86.1
    a: Calculated as based on ICP-OES results; b: Obtained from N2 adsorption and desorption; c: Estimated from the broadening of CeO2 (111), (200), (220), and (113) diffraction peaks by using the Scherrer formula from the XRD patterns of corresponding CeO2 samples and catalysts; d: Calculated from the CeO2 planes (111), (200), (220), and (113) by the MDI Jade software
    下载: 导出CSV

    表  2  不同Pd/N-CeO2的Pd的K边EXAFS拟合数据

    Table  2  Results of Pd K-edge EXAFS spectra fitted for various Pd/N-CeO2

    SampleShellCNNtotalRE /eVσ22R-factor
    Pd/N-Ti(12%)CeO2Pd–O2.2 (±0.3)3.31.99 (±0.02)5.380.0050.0173
    Pd–Pd0.9 (±0.4)2.71 (±0.03)0.140.002
    Pd/N-Ti(5%)CeO2Pd–O1.9 (±0.2)4.01.99 (±0.02)8.210.0040.0062
    Pd–Pd2.0 (±0.3)2.72 (±0.02)0.050.003
    Pd/N-Ti(2%)CeO2Pd–O1.7 (±0.3)4.22.00 (±0.04)9.230.0040.0084
    Pd–Pd2.3 (±0.3)2.73 (±0.02)0.160.003
    Pd/N-CeO2Pd–O1.2 (±0.4)4.62.02 (±0.03)8.720.0040.0043
    Pd–Pd3.5 (±0.2)2.74 (±0.01)0.190.003
    Note: CN, coordination number; ∆E, inner core correction; R, distances; σ2, Debye-Waller Factor (Fit range 3 < k < 11; 1.2 < R < 3.2; number of independent points = 9.5)
    下载: 导出CSV

    表  3  不同催化剂在醇类氧化反应中的评价

    Table  3  Performances of various catalysts in the aerobic oxidation of alcohols

    EntrySubstrateCatalystConversion /%Selectivitye /%TOFf /h−1Carbon balance /%
    1aBenzyl alcoholN-Ti(12%)CeO20.899.298.1
    2aBenzyl alcoholPd/N-Ti(12%)CeO298.698.448097.5
    3aBenzyl alcoholPd/N-Ti(5%)CeO281.397.626599
    4aBenzyl alcoholPd/N-Ti(2%)CeO260.79515398.3
    5aBenzyl alcoholPd/N-CeO246.793.79097.8
    6ap-Chlorobenzyl alcoholPd/N-Ti(12%)CeO290.799.137694.2
    7ap-Nitrobenzyl alcoholPd/N-Ti(12%)CeO284.298.530995.6
    8ao-Methylbenzyl alcoholPd/N-Ti(12%)CeO299.398.151396.4
    9ap-Methylbenzyl alcoholPd/N-Ti(12%)CeO298.997.249898.7
    10ap-Methoxylbenzyl alcoholPd/N-Ti(12%)CeO299.595.148694.8
    11aCinnamyl alcoholPd/N-Ti(12%)CeO296.799.645798.5
    12bCyclohexanolPd/N-Ti(12%)CeO287.597.123594.6
    13cButanolPd/N-Ti(12%)CeO281.490.116495.3
    14dEthanolPd/N-Ti(12%)CeO280.395.713893.8
    a: Entries 1–11: 10 mL deionized water, 6.0 mmol substrate, certain amount catalyst (the molar ratio of substrate/Pd was about 2000), 0.5 MPa O2, 90 ℃ for 24 h; b: Entries 12: 2.0 mmol cyclohexanol, the molar ratio of cyclohexanol/Pd was about 600, 90 ℃ for 36 h;
    c: Entries 13: 1.0 mmol butanol, the molar ratio of butanol/Pd was about 300, 90 ℃ for 40 h; d: Entries 14: 1.0 mmol ethanol, the molar ratio of ethanol/Pd was about 300, 90 ℃ for 40 h; e: The selectivity refers to corresponding acids for entries 12–14 and to the corresponding aldehydes for other entries; f: The TOF values based on the reaction for initial 15 min
    下载: 导出CSV
  • [1] GUO Z, LIU B, ZHANG Q, DENG W, WANG Y, YANG Y. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry[J]. Chem Soc Rev,2014,43:3480−3524. doi: 10.1039/c3cs60282f
    [2] NAJAFISHIRTARI S, FRIEDEL ORTEGA K, DOUTHWAITE M, PATTISSON S, HUTCHINGS G J, BONDUE C J, TSCHULIK K, WAFFEL D, PENG B, DEITERMANN M, BUSSER G W, MUHLER M, BEHRENS M. A perspective on heterogeneous catalysts for the selective oxidation of alcohols[J]. Chem - Eur J,2021,27:1−26. doi: 10.1002/chem.202004683
    [3] 吴超龙, 喻敏, 姚小泉. 醇的选择性催化氧化研究进展[J]. 化工时刊,2017,31:27−35.

    WU Chao-long, YU Min, YAO Xiao-quan. Research progress in selective catalytic oxidation of alcohols[J]. Chem Ind Times,2017,31:27−35.
    [4] 刘晓, 王涛, 张晨, 宋宪根, 宁丽丽, 丁云杰. Co(Ⅱ)-席夫碱配合物在水溶液中催化苯甲醇氧化制苯甲醛的研究[J]. 石油化工,2015,44:1467−1474.

    LIU Xiao, WANG Tao, ZHANG Chen, SONG Xian-gen, NING Li-li, DING Yun-jie. Aerobic oxidation of benzyl alcohol to benzaldehyde with Co(Ⅱ)-schiff base complex catalysts in aqueous solution[J]. Petrochem Technol,2015,44:1467−1474.
    [5] LEI L, WU Z, WANG R, QIN Z, CHEN C, LIU Y, WANG G, FAN W, WANG J. Controllable decoration of palladium sub-nanoclusters on reduced graphene oxide with superior catalytic performance in selective oxidation of alcohols[J]. Catal Sci Technol,2017,7:5650−5661. doi: 10.1039/C7CY01732D
    [6] LIU J, ZOU S, WANG H, XIAO L, ZHAO H, FAN J. Synergistic effect between Pt0 and Bi2O3-x for efficient room-temperature alcohol oxidation under base-free aqueous conditions[J]. Catal Sci Technol,2017,7:1203−1210. doi: 10.1039/C6CY02596J
    [7] LI T, LIU F, TANG Y, LI L, MIAO S, SU Y, ZHANG J, HUANG J, SUN H, HARUTA M, WANG A, QIAO B, LI J, ZHANG T. Maximizing the number of interfacial sites in single-atom catalysts for the highly selective, solvent-free oxidation of primary alcohols[J]. Angew Chem, Int Ed,2018,57:7795−7799. doi: 10.1002/anie.201803272
    [8] TAN H T, CHEN Y, ZHOU C, JIA X, ZHU J, CHEN J, RUI X, YAN Q, YANG Y. Palladium nanoparticles supported on manganese oxide-CNT composites for solvent-free aerobic oxidation of alcohols: Tuning the properties of Pd active sites using MnOx[J]. Appl Catal B: Environ,2012,119−120:166−174.
    [9] LIU J, ZOU S, WU J, KOBAYASHI H, ZHAO H, FAN J. Green catalytic oxidation of benzyl alcohol over Pt/ZnO in base-free aqueous medium at room temperature[J]. Chin J Catal,2018,39:1081−1089. doi: 10.1016/S1872-2067(18)63022-0
    [10] ZHANG P, GONG Y, LI H, CHEN Z, WANG Y. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose[J]. Nat Commun,2013,4:1593−1603. doi: 10.1038/ncomms2586
    [11] LEI L, LIU H, WU Z, QIN Z, WANG G, MA J, LUO L, FAN W, WANG J. Aerobic oxidation of alcohols over isolated single Au atoms supported on CeO2 nanorods: Catalysis of interfacial [O–Ov–Ce–O–Au] sites[J]. ACS Appl Nano Mater,2019,2:5214−5223. doi: 10.1021/acsanm.9b01091
    [12] ZHENG H, WEI Z H, HU X Q, XU J, XUE B. Atmospheric selective oxidation of benzyl alcohol catalyzed by Pd nanoparticles supported on CeO2 with various morphologies[J]. ChemistrySelect,2019,4:5470−5475. doi: 10.1002/slct.201900757
    [13] XIN P, LI J, XIONG Y, WU X, DONG J, CHEN W, WANG Y, GU L, LUO J, RONG H, CHEN C, PENG Q, WANG D, LI Y. Revealing the active species for aerobic alcohol oxidation by using uniform supported palladium catalysts[J]. Angew Chem, Int Ed,2018,57:4642−4646. doi: 10.1002/anie.201801103
    [14] OLMOS C M, CHINCHILLA L E, VILLA A, DELGADO J J, HUNGRíA A B, BLANCO G, PRATI L, CALVINO J J, CHEN X. Size, nanostructure, and composition dependence of bimetallic Au-Pd supported on ceria-zirconia mixed oxide catalysts for selective oxidation of benzyl alcohol[J]. J Catal,2019,375:44−55. doi: 10.1016/j.jcat.2019.05.002
    [15] MIAO Z, WU T, LI J, YI T, ZHANG Y, YANG X. Aerobic oxidation of 5-hydroxymethylfurfural (HMF) effectively catalyzed by a Ce0.8Bi0.2O2-δ supported Pt catalyst at room temperature[J]. RSC Adv,2015,5:19823−19829. doi: 10.1039/C4RA16968A
    [16] LEI L, WU Z, LIU H, QIN Z, CHEN C, LUO L, WANG G, FAN W, WANG J. A facile method for the synthesis of graphene-like 2D metal oxides and their excellent catalytic application in the hydrogenation of nitroarenes[J]. J Mater Chem A,2018,6:9948−9961. doi: 10.1039/C8TA02338G
    [17] ZHANG S, CHANG C-R, HUANG Z-Q, LI J, WU Z, MA Y, ZHANG Z, WANG Y, QU Y. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes[J]. J Am Chem Soc,2016,138:2629−2637. doi: 10.1021/jacs.5b11413
    [18] INFANTES-MOLINA A, VILLANOVA A, TALON A, KOHAN M G, GRADONE A, MAZZARO R, MORANDI V, VOMIERO A, MORETTI E. Au-decorated Ce-Ti mixed oxides for efficient CO preferential photooxidation[J]. ACS Appl Mater Interfaces,2020,12:38019−38030. doi: 10.1021/acsami.0c08258
    [19] GHORBANLOO M, NADA A A, EL-MAGHRABI H H, BEKHEET M F, RIEDEL W, DJAMEL B, VITER R, ROUALDES S, SOLIMAN F S, MOUSTAFA Y M, MIELE P, BECHELANY M. Superior efficiency of BN/Ce2O3/TiO2 nanofibers for photocatalytic hydrogen generation reactions[J]. Appl Surf Sci,2022,594:153438−153451. doi: 10.1016/j.apsusc.2022.153438
    [20] LI S, ZHU H, QIN Z, WANG G, ZHANG Y, WU Z, LI Z, CHEN G, DONG W, WU Z, ZHENG L, ZHANG J, HU T, WANG J. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B: Environ,2014,144:498−506. doi: 10.1016/j.apcatb.2013.07.049
    [21] DUTTA P, PAL S, SEEHRA M S, SHI Y, EYRING E M, ERNST R D. Concentration of Ce3 + and oxygen vacancies in cerium oxide nanoparticles[J]. Chem Mater,2006,18:5144−5146. doi: 10.1021/cm061580n
    [22] ESCH F, FABRIS S, ZHOU L, MONTINI T, AFRICH C, FORNASIERO P, COMELLI G, ROSEI R. Electron localization determines defect formation on ceria substrates[J]. Science,2005,309:752−755. doi: 10.1126/science.1111568
    [23] LAGUNA O H, SARRIA F R, CENTENO M A, ODRIOZOLA J A. Gold supported on metal-doped ceria catalysts (M = Zr, Zn and Fe) for the preferential oxidation of CO (PROX)[J]. J Catal,2010,276:360−370. doi: 10.1016/j.jcat.2010.09.027
    [24] WANG X, WU G, GUAN N, LI L. Supported Pd catalysts for solvent-free benzyl alcohol selective oxidation: Effects of calcination pretreatments and reconstruction of Pd sites[J]. Appl Catal B: Environ,2012,115−116:7−15. doi: 10.1016/j.apcatb.2011.12.011
    [25] MILLER H A, LAVACCHI A, VIZZA F, MARELLI M, DI BENEDETTO F, D'ACAPITO F, PASKA Y, PAGE M, DEKEL D R. A Pd/C-CeO2 Anode catalyst for high-performance platinum-free anion exchange membrane fuel cells[J]. Angew Chem, Int Ed,2016,55:6004−6007. doi: 10.1002/anie.201600647
    [26] WANG M, WANG F, MA J, LI M, ZHANG Z, WANG Y, ZHANG X, XU J. Investigations on the crystal plane effect of ceria on gold catalysis in the oxidative dehydrogenation of alcohols and amines in the liquid phase[J]. Chem Commun,2014,50:292−294. doi: 10.1039/C3CC46180G
    [27] MURAVEV V, SPEZZATI G, SU Y-Q, PARASTAEV A, CHIANG F-K, LONGO A, ESCUDERO C, KOSINOV N, HENSEN E J M. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation[J]. Nat Catal,2021,4:469−478. doi: 10.1038/s41929-021-00621-1
    [28] WANG H, FAN W, HE Y, WANG J, KONDO J N, TATSUMI T. Selective oxidation of alcohols to aldehydes/ketones over copper oxide-supported gold catalysts[J]. J Catal,2013,299:10−19. doi: 10.1016/j.jcat.2012.11.018
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  55
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-06-13
  • 录用日期:  2023-06-14
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2023-07-01

目录

    /

    返回文章
    返回