留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

包覆型Fe2O3@rGO负极材料的可控制备及其锂离子电池性能研究

齐慧 王睿 王文静 韩红斐

齐慧, 王睿, 王文静, 韩红斐. 包覆型Fe2O3@rGO负极材料的可控制备及其锂离子电池性能研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1478-1486. doi: 10.1016/S1872-5813(23)60380-9
引用本文: 齐慧, 王睿, 王文静, 韩红斐. 包覆型Fe2O3@rGO负极材料的可控制备及其锂离子电池性能研究[J]. 燃料化学学报(中英文), 2023, 51(10): 1478-1486. doi: 10.1016/S1872-5813(23)60380-9
QI Hui, WANG Rui, WANG Wen-jing, HAN Hong-fei. Controllable preparation of wrapped Fe2O3@rGO composites and their lithium ion storage performance[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1478-1486. doi: 10.1016/S1872-5813(23)60380-9
Citation: QI Hui, WANG Rui, WANG Wen-jing, HAN Hong-fei. Controllable preparation of wrapped Fe2O3@rGO composites and their lithium ion storage performance[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1478-1486. doi: 10.1016/S1872-5813(23)60380-9

包覆型Fe2O3@rGO负极材料的可控制备及其锂离子电池性能研究

doi: 10.1016/S1872-5813(23)60380-9
基金项目: 国家自然科学基金 (52002305 )和蛋白质基功能材料实验室(2022P010)资助
详细信息
    通讯作者:

    E-mail: qihui2005ty@126.com

    wangwenjinggb@163.com

  • 中图分类号: O646.2

Controllable preparation of wrapped Fe2O3@rGO composites and their lithium ion storage performance

Funds: The project was supported by National Natural Science Foundation of China (52002305) and Laboratory of Protein-based Functional Materials (2022P010)
  • 摘要: 本研究通过溶剂热法成功制备还原氧化石墨烯包覆Fe2O3空心球复合物(Fe2O3@rGO),并对其结构和性能进行了表征和测试。结果表明,包覆型Fe2O3@rGO负极材料由于内部存在大量的Fe−O−C键,明显提升了电子传输速率,同时石墨烯的物理限域显著降低了电极材料的粉化速率,因此,包覆型Fe2O3@rGO电极材料表现出优异的倍率性能(在大电流5 A/g下具有514 mA·h/g的可逆容量)和长循环寿命(在0.5 A/g下循环500圈后,容量保持987 mA·h/g,保持率为81.1%)。此项工作为制备高倍率、长寿命的石墨烯复合负极材料提供了一种有效策略。
  • FIG. 2707.  FIG. 2707.

    FIG. 2707.  FIG. 2707.

    图  1  所制备样品的(a)XRD谱图;(b)Raman谱图;(c)N2吸附-脱附曲线(插图为孔径分布);(d)XPS全谱谱图;(e)C1s和(f) O1s谱图

    Figure  1  (a) XRD patterns; (b)Raman spectra; (c)Nitrogen adsorption/desorption isotherm (inset is pore size distribution); (d) Survey XPS spectra; (e) C1s spectra and (f) O1s spectra for Fe2O3/rGO and Fe2O3@rGO

    图  2  样品的SEM照片((a)、(b))Fe2O3@rGO和((c)、(d))Fe2O3/rGO (图中箭头所指为还原氧化石墨烯)(e)包覆型Fe2O3@rGO复合结构的合成机制图

    Figure  2  SEM images of ((a), (b)) Fe2O3@rGO and ((c), (d)) Fe2O3/rGO composites; (e) Schematic illustration of the formation of rGO wrapped Fe2O3 microspheres (Fe2O3@rGO)

    图  3  ((a)、(b))Fe2O3@rGO 和((c)、(d))Fe2O3/rGO的TEM和HRTEM照片

    Figure  3  TEM and HRTEM images of ((a), (b)) Fe2O3@rGO and ((c), (d)) Fe2O3/rGO composites

    图  4  样品的电化学性能图:(a)循环伏安曲线;(b)倍率性能;((c)、(d))不同电流密度下的充放电曲线;(e)循环性能;(f)库伦效率;(g)不同电极材料循环200圈后的电化学阻抗

    Figure  4  (a) CV curves; (b) Rate performance; ((c), (d)) Charge-discharge profiles at different current density; (e) Cycling performance of the obtained samples; (f) Coulombic efficiency and (g) Electrochemical impedance spectra (EIS) of Fe2O3@rGO and Fe2O3/rGO anodes after 200 cycles

    图  5  循环200圈后的电极材料的TEM照片((a)、(b))包覆型Fe2O3@rGO;((c)、(d))担载型Fe2O3/rGO(插图为相应的衍射花样)

    Figure  5  TEM images of anode materials after 200 cycles: ((a)、(b)) Fe2O3@rGO; ((c)、(d)) Fe2O3/rGO(inset is corresponding SAED pattern)

    图  6  包覆型Fe2O3@rGO复合物在充放电过程中发生的结构演变机制

    Figure  6  Structure evolution of Fe2O3@rGO composites during charge/discharge process

  • [1] 杨改秀, 王可欣, 张泽珍, 甄峰, 孙永明. 电沉积制备MnO2催化剂及其在微生物燃料电池中的应用[J]. 燃料化学学报,2020,48(7):889−896.

    YANG Gai-xiu, WANG Ke-xin, ZHANG Ze-zhen, ZHEN Feng, SUN Yong-ming. Preparation of MnO2 catalyst by electrochemical deposition and its application in the microbial fuel cells[J]. J Fuel Chem Technol,2020,48(7):889−896.
    [2] 马晓涛, 周娴娴, 李瑜, 刘晓晓, 郭倩, 段东红, 刘世斌. 纳米CoSe修饰氮掺杂多孔碳的可控制备及其锂硫电池多硫化物的催化转化效应[J]. 无机化学学报,2023,39(3):443−455.

    MA Xiao-tao, ZHOU Xian-xian, LI Yu, LIU Xiao-xiao, GUO Qian, DUAN Dong-hong, LIU Shi-bin. Controllable synthesis of N-doped porous carbon decorated with nano CoSe and catalytic effect on polysulfides conversion for Li-S battery[J]. Chin J Inorg Chem,2023,39(3):443−455.
    [3] MA J, GUO X, Yan Y, XUE H, PANG H. FeOx-based materials for electrochemical energy storage[J]. Adv Sci,2018,5:1700986. doi: 10.1002/advs.201700986
    [4] 曹虎, 王帅, 吴沁宇, 宋广生, 马扬洲. 锂离子电池SiO2负极材料的改性研究进展[J]. 功能材料,2022,53(6):6067−6077. doi: 10.3969/j.issn.1001-9731.2022.06.010

    CAO Hu, WANG Shuai, WU Qin-yu, SONG Guang-sheng, MA Yang-zhou. Research progress on modification of SiO2 anode materials for lithium-ion batteries[J]. J Funct Mater,2022,53(6):6067−6077. doi: 10.3969/j.issn.1001-9731.2022.06.010
    [5] HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chem Soc Rev,2017,46:3529−3614. doi: 10.1039/C6CS00776G
    [6] CHEN Y, YUAN X, YANG C, LIAN Y, RAZZAQ A. A, SHAH R, GUO J, ZHAO X, PENG Y, DENG Z. γ-Fe2O3 nanoparticles embedded in porous carbon fibers as binder-free anodes for high-performance lithium and sodium ion batteries[J]. J Alloys Compd,2019,777:127−134. doi: 10.1016/j.jallcom.2018.10.371
    [7] GAO L, GU C, ZHAO J, SONG X, HUANG J. Preparation of manganese monoxide@reduced graphene oxide nanocomposites with superior electrochemical performances for lithium-ion batteries[J]. Ceram Int,2019,45(3):3425−3434. doi: 10.1016/j.ceramint.2018.10.257
    [8] GUO L, SUN H, QIN C, LI W, WANG F, SONG W, DU J, ZHONG F, DING Y. Flexible Fe3O4 nanoparticles/N-doped carbon nanofibers hybrid film as binder-free anode materials for lithium-ion batteries[J]. Appl Surf Sci,2018,459:263−270. doi: 10.1016/j.apsusc.2018.08.001
    [9] HE C, WU S, ZHAO N, SHI C, LIU E, LI J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material[J]. ACS Nano,2013,7(5):4459−4469. doi: 10.1021/nn401059h
    [10] LI W, YANG F, RUI Y, TANG B. Strong covalent interaction Fe2O3/nitrogen-doped porous carbon fiber hybrids as free-standing anodes for lithium-ion batteries[J]. J Mater Sci,2019,54:6500−6514. doi: 10.1007/s10853-019-03330-0
    [11] FANG Y, CHEN Z, XIAO L, AI X, CAO Y, YANG H. Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries[J]. Small,2018,14(9):1703116. doi: 10.1002/smll.201703116
    [12] HUANG B, TAI K, ZHANG M, XIAO Y, DILLON S J. Comparative study of Li and Na electrochemical reactions with iron oxide nanowires[J]. Electrochim Acta,2014,118:143−149. doi: 10.1016/j.electacta.2013.12.007
    [13] JIN Y, DANG L, ZHANG H, SONG C, LU Q, GAO F. Synthesis of unit-cell-thick α-Fe2O3 nanosheets and their transformation to γ-Fe2O3 nanosheets with enhanced LIB performances[J]. Chem Eng J,2017,326:292−297. doi: 10.1016/j.cej.2017.05.155
    [14] LEE S H, SRIDHA V, JUNG J H, KARTHIKEYAN K, LEE Y, MUKHERJEE R, KORATKAR N, OH I. Graphene-nanotube-iron hierarchical nanostructure as lithium ion battery anode[J]. ACS Nano,2013,7(5):4242−4251. doi: 10.1021/nn4007253
    [15] LIU J, WU Z, TIAN Q, WU W, XIAO X. Shape-controlled iron oxide nanocrystals: synthesis, magnetic properties and energy conversion applications[J]. CrystEngComm,2016,18:6303−6326. doi: 10.1039/C6CE01307D
    [16] ZHOU S, ZHOU Y, JIANG W, GUO H, WANG Z, LI X. Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery[J]. Appl Surf Sci,2018,439:927−933. doi: 10.1016/j.apsusc.2017.12.259
    [17] PENKI T R, SHIVAKUMARA S, MINAKSHI M. Porous flower-like α-Fe2O3 Nanostructure: A high performance anode material for lithium-ion batteries[J]. Electrochim Acta,2015,167:330−339. doi: 10.1016/j.electacta.2015.03.146
    [18] YANG S, SONG X, ZHANG P, GAO L. Heating-Rate-Induced Porous α-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors[J]. ACS Appl Mater Interfaces,2015,7(1):75−79. doi: 10.1021/am507910f
    [19] PENG S, YU L, SUN M, CHENG G, LIN T, MO Y, LI Z. Bunched akaganeite nanorod arrays: Preparation and high-performance for flexible lithium-ion batteries[J]. J. Power Sources,2015,296(20):237−244.
    [20] YU X, YANG J, YUAN Z, GUO L, SUI Z, WANG M. Binder-free 3D porous Fe3O4-Fe2P-Fe@C films as high-performance anode materials for lithium-ion batteries[J]. Ceram Int,2020,46(11):17469−17477. doi: 10.1016/j.ceramint.2020.04.041
    [21] LIANG H, CHEN W, WANG R, QI Z, MI J, WANG Z. X-shaped hollow α-FeOOH penetration twins and their conversion to α-Fe2O3 nanocrystals bound by high-index facets with enhanced photocatalytic activity[J]. Chem Eng J,2015,274:224−230. doi: 10.1016/j.cej.2015.03.125
    [22] LIN M, TNG L, LIM T, CHOO M, ZHANG J, TAN H R, BAI S. Hydrothermal synthesis of octadecahedral hematite (α-Fe2O3) nanoparticles: An epitaxial growth from goethite (α-FeOOH)[J]. J Phys Chem C,2014,118(20):10903−10910. doi: 10.1021/jp502087h
    [23] LI F, LUO G, YU J, HUANG W, XU D, CHEN W, HUANG X, YANG S, FANG Y, YU X. Terminal hollowed Fe2O3@SnO2 heterojunction nanorods anode materials with enhanced performance for lithium-ion battery[J]. J Alloys Compd,2019,773:778−787. doi: 10.1016/j.jallcom.2018.09.159
    [24] CAO H, ZHOU X, ZHENG C, LIU Z. Two-dimensional porous micro/nano metal oxides templated by graphene oxide[J]. ACS Appl Mater Interfaces,2015,7:11984−11990. doi: 10.1021/acsami.5b02014
    [25] CHAI X, SHI C, LIU E, LI J, ZHAO N, HE C. Carbon-coated Fe2O3 nanocrystals with enhanced lithium storage capability[J]. Appl Surf Sci,2015,347:178−185. doi: 10.1016/j.apsusc.2015.04.074
    [26] CHENG X, GUI X, LIN Z, ZHENG Y, LIU M, ZHAN R, ZHU Y, TANG Z. Three-dimensional α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes[J]. J Mater Chem A,2015,3(42):20927−20934. doi: 10.1039/C5TA03635F
    [27] FU Y, DONG C L, LEE W Y, CHEN J, GUO P, ZHAO L, SHEN S. Nb-doped hematite nanorods for efficient solar water splitting: Electronic structure evolution versus morphology alteration[J]. Chem Nano Mater,2016,2:704−711.
    [28] HAN T, WEI Y, JIN X, JIU H, ZHANG L, SUN Y, TIAN J, SHANG R, HANG D, ZHAO R. Hydrothermal self-assembly of α-Fe2O3 nanorings@graphene aerogel composites for enhanced Li storage performance[J]. J Mater Sci,2019,54:7119−7130. doi: 10.1007/s10853-019-03371-5
    [29] LIU H, JIA M, ZHU Q, CAO B, CHEN R, WANG Y, WU F, XU B. 3D-0D graphene-Fe3O4 quantum dot hybrids as high-performance anode materials for sodium-ion batteries[J]. ACS Appl Mater Interfaces,2016,8:26878−26885. doi: 10.1021/acsami.6b09496
    [30] FU Y, WEI Q, WANG X, ZHANG G, SHU H, YANG X, TAVARES A, SUN S. A facile synthesis of Fe3O4 nanoparticles/graphene for high-performance lithium/sodium-ion batteries[J]. RSC Adv,2016,6:16624−16633. doi: 10.1039/C5RA25835A
    [31] QI L, XIN Y, ZUO Z, YANG C, WU K, WU B, ZHOU H. Grape-like Fe3O4 agglomerates grown on graphene nanosheets for ultrafast and stable lithium storage[J]. ACS Appl Mater Interfaces,2016,8:17245−17252. doi: 10.1021/acsami.6b04274
    [32] WU S, XU R, LU M, GE R, IOCOZZIA J, HAN C, JIANG B, LIN Z. Graphene-containing nanomaterials for lithium-ion batteries[J]. Adv Energy Mater,2015,5:1500400. doi: 10.1002/aenm.201500400
    [33] YANG S, FENG X, WANG L, TANG K, MAIER J, MÜLLEN K. Graphene-based nanosheets with a sandwich structure[J]. Angew Chem Int Ed,2010,49:4795−4799. doi: 10.1002/anie.201001634
    [34] QI H, CAO L, LI J, HUANG J, XU Z, CHENG Y, KONG Y, YANAGISAWA K. High pseudocapacitance in FeOOH/rGO composites with superior performance for high rate anode in Li-ion battery[J]. ACS Appl Mater Interfaces,2016,8(51):35253−35263. doi: 10.1021/acsami.6b11840
    [35] QI H, CAO L, LI J, MA M, CHENG Y, WANG C, DANG H. Rice crust-like Fe3O4@C/rGO with improved extrinsic pseudocapacitance for high-rate and long-life Li-ion anode[J]. J Alloys Compd,2019,804:57−64. doi: 10.1016/j.jallcom.2019.06.284
    [36] QI H, HUANG J, TANG L, MA M, DENG W, ZHANG C. Confined pulverization promoting durable pseudocapacitance for FeOOH@PEDOT anode in Li-ion battery[J]. J Electroanal Chem,2021,882:115005. doi: 10.1016/j.jelechem.2021.115005
    [37] ETACHERI V, HONG C N, TANG J, POL V G. Cobalt nanoparticles chemically bonded to porous carbon nanosheets: A stable high-capacity anode for fast-charging lithium-ion batteries[J]. ACS Appl Mater Interfaces,2018,10:4652−4661. doi: 10.1021/acsami.7b15915
    [38] HUANG Y, HU X, LI J, ZHANG J, CAI D, SA B, ZHAN H, WEN Z. Rational construction of heterostructured core-shell Bi2S3@Co9S8 complex hollow particles toward high-performance Li- and Na-ion storage[J]. Energy Storage Materials,2020,29:121−130. doi: 10.1016/j.ensm.2020.04.004
    [39] BANG J, AHN J, ZHANG J, KO T H, Park B, LEE Y M, JUNG B K, LEE S Y, OK J, KIM B H, KIM T, CHOI J I, LEE C H, OH S J. Stretchable and directly patternable double-layer structure electrodes with complete coverage[J]. ACS Nano,2022,16:12134−12144. doi: 10.1021/acsnano.2c02664
    [40] QI H, ZHAO C, HUANG J, HE C, TANG L, DENG W. Metastable FeCN2@nitrogen-doped carbon with high pseudocapacitance as an anode material for sodium ion batteries[J]. Nanoscale,2022,14:780−789. doi: 10.1039/D1NR06705B
  • 2023-D024-SupportingInformation.docx
  • 加载中
图(7)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  18
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-20
  • 修回日期:  2023-08-13
  • 录用日期:  2023-08-14
  • 网络出版日期:  2023-09-19
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回