留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层状多孔炭片负载钌催化剂的制备及其催化氨硼烷水解制氢性能研究

左佑华 吴慧 花俊峰 郑君宁 许立信 叶明富 万超

左佑华, 吴慧, 花俊峰, 郑君宁, 许立信, 叶明富, 万超. 层状多孔炭片负载钌催化剂的制备及其催化氨硼烷水解制氢性能研究[J]. 燃料化学学报(中英文), 2024, 52(3): 429-437. doi: 10.1016/S1872-5813(23)60385-8
引用本文: 左佑华, 吴慧, 花俊峰, 郑君宁, 许立信, 叶明富, 万超. 层状多孔炭片负载钌催化剂的制备及其催化氨硼烷水解制氢性能研究[J]. 燃料化学学报(中英文), 2024, 52(3): 429-437. doi: 10.1016/S1872-5813(23)60385-8
ZUO Youhua, WU Hui, HUA Junfeng, ZHENG Junning, XU Lixin, YE Mingfu, WAN Chao. Preparation of layered porous carbon supported ruthenium catalyst and its performance for ammonia borane hydrolyzing to hydrogen[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 429-437. doi: 10.1016/S1872-5813(23)60385-8
Citation: ZUO Youhua, WU Hui, HUA Junfeng, ZHENG Junning, XU Lixin, YE Mingfu, WAN Chao. Preparation of layered porous carbon supported ruthenium catalyst and its performance for ammonia borane hydrolyzing to hydrogen[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 429-437. doi: 10.1016/S1872-5813(23)60385-8

层状多孔炭片负载钌催化剂的制备及其催化氨硼烷水解制氢性能研究

doi: 10.1016/S1872-5813(23)60385-8
基金项目: 国家自然科学基金青年基金项目(22108238)和联合项目(U22A20408),安徽省自然科学基金青年基金项目(1908085QB68),中国博士后面上项目(2019M662060),派出项目(PC2022046)和特别资助站中项目(2020T130580),江苏省绿色催化材料与技术重点实验室(BM2012110),绿色能源与环境催化福建省高校重点实验室开放课题(FJ-GEEC202204),2022年国家级大学生创新创业训练计划项目(202210360037)
详细信息
    通讯作者:

    E-mail: lxxu@hotmail.com

    wanchao@zju.edu.cn

  • 中图分类号: O643.36

Preparation of layered porous carbon supported ruthenium catalyst and its performance for ammonia borane hydrolyzing to hydrogen

Funds: The project was supported by the National Natural Science Foundation of China (22108238, U22A20408), Anhui Provincial Natural Science Foundation (1908085QB68), China Postdoctoral Science Foundation (2019M662060, PC2022046, 2020T130580), Open Research Funds of Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110), Open Research Funds of Key Laboratory of Green Energy and Environment Catalysis (FJ-GEEC202204) and 2022 National Undergraduate Innovation and Entrepreneurship Training Program (202210360037).
  • 摘要: 本研究以煤沥青为炭材料,氯化钠为模板剂,碳酸钾为活化剂,在氩气气氛下高温煅烧得到载体层状多孔炭片(LPCS),通过浸渍法向其中加入RuCl3金属溶液,将活性组分Ru负载到LPCS载体上合成Ru/LPCS催化剂,并对其催化氨硼烷水解制氢的性能进行了研究。结果表明,Ru/LPCS催化剂中,当煅烧温度为1123 K时,Ru的负载量为2%时,催化剂的反应转化频率(TOF)值最大,此时有光下催化剂的TOF为334.8 min−1,是无光照时TOF的1.38倍。在光照下,催化剂的活化能(Ea)从90.60 kJ/mol下降到70.33 kJ/mol。氨硼烷水解制氢速率相对于其浓度的级数为0.75,而相对于催化剂的用量满足于一级动力学关系。
  • FIG. 3022.  FIG. 3022.

    FIG. 3022.  FIG. 3022.

    图  1  2%Ru/LPCS1123催化剂的 (a)、(b)不同放大倍数下的TEM图像;(c) HAADF图;(d) C;(e) N;(f) O;(g) Ru元素分布

    Figure  1  2% TEM images of Ru/LPCS1123 catalyst at different magnifications (a), (b); HAADF image (c); elemental distribution of C (d), N (e), O (f), and Ru (g)

    图  2  2%Ru/LPCS1123催化剂的XRD谱图

    Figure  2  X-ray diffraction pattern of 2%Ru/LPCS1123 catalysts

    图  3  2%Ru/LPCS1123催化剂的XPS谱图

    Figure  3  XPS spectrum of 2.5%Ru/LPCS1123 catalyst

    (a): Full spectrum; (b): Ru 3p fine spectrum; (c): C 1s fine spectrum; (d): N 1s fine spectrum.

    图  4  不同煅烧温度下的2.5%Ru/LPCST催化AB分解产氢反应中的脱氢速率

    Figure  4  Dehydrogenation rate of 2.5%Ru/LPCST prepared at different calcination temperatures

    图  5  (a)不同Ru负载量的Ru/LPCS1123催化剂在298 K催化AB水解反应中的脱氢速率; (b)为(a)所对应的TOF值

    Figure  5  (a) Dehydrogenation rate curve of Ru/LPCS1123 catalyst with different Ru loading in 298 K catalyzed AB hydrolysis reaction; (b) is the TOF diagram corresponding to (a)

    图  6  (a) 298 K时 AB 脱氢速率随 AB 浓度的变化; (b)AB脱氢速率与 AB 浓度的对数值

    Figure  6  (a) Hydrogen evolution rate as a function of AB concentrations at 298 K; (b) The logarithmic plot of hydrogen evolution rate versus AB concentration

    图  7  (a) 298 K时AB脱氢速率随催化剂含量的变化; (b) AB脱氢速率与催化剂质量的对数值

    Figure  7  (a) Hydrogen evolution rate as a function of catalyst amount at 298 K;(b) The logarithmic plot of hydrogen evolution rate versus catalyst amount

    图  8  (a)有光和无光条件下,AB脱氢速率随催化剂含量的变化; (b)为(a)对应的TOF值

    Figure  8  (a) AB dehydrogenation rate as a function of catalyst content in the presence or absence of light; (b) the TOF value corresponding to (a)

    图  9  (a)有光照、(c)无光照不同温度下2%Ru/LPCS1123催化AB脱氢速率曲线; (b)、(d)分别是(a)、(c)对应的阿伦尼乌斯方程:lnk与 1000/T 关系曲线

    Figure  9  AB dehydrogenation rate over 2%Ru/LPCS1123 at different temperatures with (a) and without light(c); (b), (d) are the Arrhenius equations corresponding to (a) and (c): lnk vs. 1000/T

    表  1  催化剂的ICP和BET的测试

    Table  1  ICP and BET Results of the catalysts

    CatalystSBET/
    (m2·g−1)
    Theoretical
    Ru/mmol
    Reality
    Ru/mmol
    3%Ru/LPCS11231042.10.060.041
    2.5%Ru/LPCS11230.050.037
    2%Ru/LPCS1123980.60.040.027
    1.5%Ru/LPCS11230.030.021
    1%Ru/LPCS1123964.50.020.013
    LPCS1123990.200
    下载: 导出CSV
  • [1] ALPAYDIN C Y, GÜLBAY S K, COLPAN C O. A review on the catalysts used for hydrogen production from ammonia borane[J]. Int J Hydrogen Energy,2020,45(5):3414−3434. doi: 10.1016/j.ijhydene.2019.02.181
    [2] EPPINGER J, HUANG K W. Formic acid as a hydrogen energy carrier[J]. ACS Energy Lett,2017,2(1):188−195. doi: 10.1021/acsenergylett.6b00574
    [3] MEHDI S, LIU Y Y, WEI H J, et al. P-induced Co-based interfacial catalysis on Ni foam for hydrogen generation from ammonia borane[J]. Appl Catal B: Environ,2023,325:122317. doi: 10.1016/j.apcatb.2022.122317
    [4] SEMIZ L. Hydrogen generation from ammonia borane by polymer supported platinum films[J]. Chem Phys Lett,2021,767:138365. doi: 10.1016/j.cplett.2021.138365
    [5] SONG H Q, WU M, TANG Z Y, et al. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production[J]. Angew Chem Int Ed,2021,60(13):7234−7244. doi: 10.1002/anie.202017102
    [6] YANG J G, YUAN Q, LIU Y, et al. Low-cost ternary Ni-Fe-P catalysts supported on Ni foam for hydrolysis of ammonia borane[J]. Inorg Chem Front,2019,6(5):1189−1194. doi: 10.1039/C9QI00048H
    [7] ZHANG H, GU X J, LIU P L, et al. Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride[J]. J Mater Chem A,2017,5(5):2288−2296. doi: 10.1039/C6TA08987A
    [8] AKBAYRAK S, TONBUL Y, ÖZKAR S. Tungsten (VI) oxide supported rhodium nanoparticles: Highly active catalysts in hydrogen generation from ammonia borane[J]. Int J Hydrogen Energy,2021,46(27):14259−14269. doi: 10.1016/j.ijhydene.2021.01.156
    [9] YAO Q L, DING Y Y, LU Z H. Noble-metal-free nanocatalysts for hydrogen generation from boron-and nitrogen-based hydrides[J]. Inorg Chem Front,2020,7(20):3837−3874. doi: 10.1039/D0QI00766H
    [10] 曹云钟, 郑君宁, 吴慧, 等. Pt基催化剂催化氨硼烷水解产氢的研究进展[J]. 稀有金属,2023,47(8):1122−1131.

    CAO Yunzhong, ZHENG Junning, WU Hui, et al. Advances in hydrogen production by ammonia borane hydrolysis over Pt-based catalysts[J]. Chin J Rare Met,2023,47(8):1122−1131.
    [11] ÖZKAR S. A review on platinum (0) nanocatalysts for hydrogen generation from the hydrolysis of ammonia borane[J]. Dalton Trans,2021,50(36):12349−12364. doi: 10.1039/D1DT01709H
    [12] ZHOU L M, MENG J, LI P, et al. Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowiresfor hydrogen evolution from ammonia borane[J]. Mater Horiz,2017,4(2):268−273. doi: 10.1039/C6MH00534A
    [13] CHEN W Y, LI D L, WANG Z J, et al. Reaction mechanism and kinetics for hydrolytic dehydrogenation of ammonia borane on a Pt/CNT catalyst[J]. AIChE J,2017,63(1):60−65. doi: 10.1002/aic.15389
    [14] TONBUL Y, AKBAYRAK S, ÖZKAR S. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane[J]. J Colloid Interface Sci,2019,553:581−587. doi: 10.1016/j.jcis.2019.06.038
    [15] 马明超, 臧甲忠, 于海斌, 等. 贵金属催化剂理性设计在选择性加氢反应中的研究进展[J]. 无机盐工业,2021,53(7):23−29. doi: 10.19964/j.issn.1006-4990.2021-0008

    MA Mingchao, ZANG Jiazhong, YU Haibin, et al. Research progress rational design of noble metal catalysts for selective hydrogenation[J]. Inorg Chem Ind,2021,53(7):23−29. doi: 10.19964/j.issn.1006-4990.2021-0008
    [16] OIU P Y, DESCHAMPS F, CALDARELLA G, et al. Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells[J]. J Power Sources,2015,297:492−503. doi: 10.1016/j.jpowsour.2015.08.022
    [17] PENG S G, LIU J C, ZHANG J, et al. An improved preparation of graphene supported ultrafine ruthenium (0) NPs: Very active and durable catalysts for H2 generation from methanolysis of ammonia borane[J]. Int J Hydrogen Energy,2015,40(34):10856−10866. doi: 10.1016/j.ijhydene.2015.06.113
    [18] 席楠, 程春晖, 李红伟, 等. 苯选择加氢制环己烯在钌基催化体系中的技术进展[J]. 精细化工,2020,37(12):2457−2466. doi: 10.13550/j.jxhg.20200474

    XI Nan, CHENG Chunhui, LI Hongwei, et al. Technical progress of selective hydrogenation of benzene to cyclohexene in ruthenium-based catalytic system[J]. Fine Chem,2020,37(12):2457−2466. doi: 10.13550/j.jxhg.20200474
    [19] AKBAYRAK S, ÖZKAR S. Ruthenium (0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane[J]. ACS Appl Mater Interfaces,2012,4(11):6302−6310. doi: 10.1021/am3019146
    [20] FU L, CAI L. Ru nanoparticles loaded on tannin immobilized collagen fibers for catalytic hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2021,46(18):10749−10762. doi: 10.1016/j.ijhydene.2020.12.152
    [21] LI S H, SONG X R, LI Y T, et al. Efficient hydrolytic dehydrogenation of ammonia borane over ultrafine Ru nanoparticles supported on biomass-derived porous carbon[J]. Int J Hydrogen Energy,2021,46(54):27555−27566. doi: 10.1016/j.ijhydene.2021.06.029
    [22] GIL-HERRERA L K, PARIENTE J A, GALLEGO-GÓMEZ F, et al. Hierarchically porous carbon photonic structures[J]. Adv Funct Mater,2018,28(27):1703885. doi: 10.1002/adfm.201703885
    [23] ZANG X N, DONG Y, JIAN C Y, et al. Upgrading carbonaceous materials: Coal, tar, pitch, and beyond[J]. Matter,2022,5(2):430−447. doi: 10.1016/j.matt.2021.11.022
    [24] WANG H, XU C, CHEN Q, et al. Nitrogen-doped carbon-stabilized Ru nanoclusters as excellent catalysts for hydrogen production[J]. ACS Sustainable Chem Eng,2018,7(1):1178−1184.
    [25] DING X Y, GU R, SHI P H, et al. A three-dimensional hierarchical porous carbon network decorated with MnO2 nanoparticles (HPCM) as an efficient sulfur host for high-performance lithium-sulfur batteries (LSBs)[J]. J Alloys Compd,2020,835:155206. doi: 10.1016/j.jallcom.2020.155206
    [26] FENG Y L, ZHANG S F, ZHU L H, et al. Reduced graphene oxide-supported ruthenium nanocatalysts for highly efficient electrocatalytic hydrogen evolution reaction[J]. Int J Hydrogen Energy,2022,47(94):39853−39863. doi: 10.1016/j.ijhydene.2022.09.154
    [27] LI W D, ZHAO Y X, LIU Y, et al. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production[J]. Angew Chem Int Ed,2021,133(6):3327−3335. doi: 10.1002/ange.202013985
    [28] ZHANG F F, ZHU Y L, CHEN Y, et al. RuCo alloy bimodal nanoparticles embedded in N-doped carbon: A superior pH-universal electrocatalyst outperforms benchmark Pt for the hydrogen evolution reaction[J]. J Mater Chem A,2020,8(25):12810−12820. doi: 10.1039/D0TA04491A
    [29] 吴慧, 郑君宁, 李蓉, 等. NiPt/CeO2催化剂的制备及其催化水合肼分解制氢性能研究[J/OL]. 中国稀土学报. https://kns.cnki.net/kcms2/detail/11.2365.TG.20230725.1716.008.html.

    WU Hui, ZHENG Junning, LI Rong, et al. Synthesis of NiPt/CeO2 catalyst and its catalytic performance for hydrogen production via hydrazine hydrate decomposition[J/OL]. J Chin Soc Rare Earths. https://kns.cnki.net/kcms2/detail/11.2365.TG.20230725.1716.008.html.
    [30] MA J W, WANG J, LIU J, et al. Electron-rich ruthenium encapsulated in nitrogen-doped carbon for efficient hydrogen evolution reaction over the whole pH[J]. J Colloid Interface Sci,2022,620:242−252. doi: 10.1016/j.jcis.2022.03.149
    [31] BARMAN B K, SARKAR B, GHOSH P, et al. In situ decoration of ultrafine Ru nanocrystals on N-doped graphene tube and their applications as oxygen reduction and hydrogen evolution catalyst[J]. ACS Appl Energy Mater,2019,2(10):7330−7339. doi: 10.1021/acsaem.9b01318
    [32] HAN W W, CHEN L L, MA B, et al. Ultra-small Mo2C nanodots encapsulated in nitrogen-doped porous carbon for pH-universal hydrogen evolution: Insights into the synergistic enhancement of HER activity by nitrogen doping and structural defects[J]. J Mater Chem A,2019,7(9):4734−4743. doi: 10.1039/C8TA11098K
    [33] SUN S N, YU Q F, LI M, et al. Surface modification of porous carbon nanomaterials for water vapor adsorption[J]. ACS Appl Nano Mater,2023,6(4):2822−2834. doi: 10.1021/acsanm.2c05205
    [34] 李贵, 梁雨, 郑君宁, 等. Rh/N-GMCs纳米催化剂的制备及其催化氨硼烷水解产氢性能研究[J]. 燃料化学学报(中英文),2023,51(4):528−537.

    LI Gui, LIANG Yu, ZHENG Junning, et al. Preparation of Rh/N-GMCs nanocatalyst and its catalytic performance for the Hydrolytic dehydrogenation of ammonia borane[J]. J Fuel Chem Technol,2023,51(4):528−537.
    [35] RAKAP M, KALU E E, ÖZKAR S. Polymer-immobilized palladium supported on TiO2 (Pd-PVB-TiO2) as highly active and reusable catalyst for hydrogen generation from the hydrolysis of unstirred ammonia-borane solution[J]. Int J Hydrogen Energy,2011,36(2):1448−1455. doi: 10.1016/j.ijhydene.2010.10.097
    [36] WEN L, ZHENG Z, LUO W, et al. Ruthenium deposited on MCM-41 as efficient catalyst for hydrolytic dehydrogenation of ammonia borane and methylamine borane[J]. Chin Chem Lett,2015,26(11):1345−1350. doi: 10.1016/j.cclet.2015.06.019
    [37] 王小燕, 张若凡, 司航, 等. 椰壳炭负载钌催化剂的制备及其催化氨硼烷水解制氢性能[J]. 石油炼制与化工,2023,54(7):64−70. doi: 10.3969/j.issn.1005-2399.2023.07.012

    WANG Xiaoyan, ZHANG Ru-fan, SI Hang, et al. Preparation of coconut shell carbon supported ruthenium as a catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. Pet Process Petrochem,2023,54(7):64−70. doi: 10.3969/j.issn.1005-2399.2023.07.012
    [38] 查达伟. 椰壳纳米炭粉的电催化与光催化性能研究[D]. 合肥: 合肥工业大学, 2016.

    ZHA Dawei. Study of electrocatalytic and photocatalytic performance of coconut shell nano-carbon[D]. Hefei: Hefei University of Technology, 2016.
    [39] ZHAI Q G, XIE S J, FAN W Q, et al. Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper (I) oxide Co-catalysts with a core-shell structure[J]. Angew Chem Int Ed,2013,125(22):5888−5891. doi: 10.1002/ange.201301473
    [40] XIAO J D, HAN L L, LUO J, Et al. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis[J]. Angew Chem Int Ed,2018,57(4):1118−1118. doi: 10.1002/anie.201713194
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  73
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 修回日期:  2023-09-18
  • 录用日期:  2023-09-20
  • 网络出版日期:  2023-10-12
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回