留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag+改性NaY分子筛的制备及其吸附脱氮性能研究

富添 洪新 田宇 孙潇镝 王聚财 唐克 栾秀阳

富添, 洪新, 田宇, 孙潇镝, 王聚财, 唐克, 栾秀阳. Ag+改性NaY分子筛的制备及其吸附脱氮性能研究[J]. 燃料化学学报(中英文), 2024, 52(3): 384-394. doi: 10.1016/S1872-5813(23)60386-X
引用本文: 富添, 洪新, 田宇, 孙潇镝, 王聚财, 唐克, 栾秀阳. Ag+改性NaY分子筛的制备及其吸附脱氮性能研究[J]. 燃料化学学报(中英文), 2024, 52(3): 384-394. doi: 10.1016/S1872-5813(23)60386-X
FU Tian, HONG Xin, TIAN Yu, SUN Xiaodi, WANG Jucai, TANG Ke, LUAN Xiuyang. Preparation of Ag+ modified NaY molecular sieve and its adsorption and denitrogenation properties[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 384-394. doi: 10.1016/S1872-5813(23)60386-X
Citation: FU Tian, HONG Xin, TIAN Yu, SUN Xiaodi, WANG Jucai, TANG Ke, LUAN Xiuyang. Preparation of Ag+ modified NaY molecular sieve and its adsorption and denitrogenation properties[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 384-394. doi: 10.1016/S1872-5813(23)60386-X

Ag+改性NaY分子筛的制备及其吸附脱氮性能研究

doi: 10.1016/S1872-5813(23)60386-X
基金项目: 2023年度省教育厅高等学校基本科研项目(JYTMS20230852)和2023年国家级大学生创新创业训练计划(202310154014)资助
详细信息
    通讯作者:

    Tel:13940616508,E-mail:hongxin12@sohu.com

  • 中图分类号: X511

Preparation of Ag+ modified NaY molecular sieve and its adsorption and denitrogenation properties

Funds: The project was supported by 2023 Provincial Department of Education Basic Research Projects for Higher Education Institutions (JYTMS20230852) and 2023 National College Student Innovation and Entrepreneurship Training Program Project (202310154014)
  • 摘要: 采用Ag+改性NaY分子筛成功制备了AgY分子筛,利用XRD射线衍射、FT-IR、N2吸附-脱附对NaY和AgY分子筛进行了表征,并用于吸附脱除模拟燃料中吡啶、苯胺、喹啉碱性氮化物,AgY分子筛的吸附能力明显优于NaY分子筛。考察了吸附温度、吸附时间对AgY分子筛吸附三种氮化物的影响,实验结果表明,吸附能力均为:苯胺>喹啉>吡啶,为了进一步研究其吸附机理,采用Materials Studio软件建立了AgY分子筛12T团簇模型并在303、323、343 K下模拟三种氮化物分子在AgY分子筛上的吸附,计算了吸附能、活性中心与吡啶、苯胺、喹啉分子的距离、前线轨道、等密度分布、径向分布函数等相关参数,计算结果也表明,AgY分子筛对苯胺的吸附优于喹啉,优于吡啶,与实验结果一致,且吸附以化学吸附为主,AgY分子筛S位和W位为主要吸附位。吸附等温线研究结果表明,AgY分子筛对吡啶的吸附符合Langmuir-Freundlich混合吸附模型,对苯胺、喹啉的吸附符合Freundlich吸附模型。吸附动力学和吸附热力学结果表明,AgY分子筛对吡啶的吸附符合准二级动力学模型,对苯胺、喹啉的吸附符合准一级动力学模型,吸附是自发的熵增过程。
  • FIG. 3017.  FIG. 3017.

    FIG. 3017.  FIG. 3017.

    图  1  AgY分子筛12T团簇模型和优化后的氮化物3D模型结构

    Figure  1  AgY molecular sieve 12T cluster model and optimized nitride 3D model structure

    图  2  AgY和NaY分子筛的XRD谱图

    Figure  2  XRD patterns of AgY and NaY molecular sieves

    图  3  AgY和NaY分子筛的红外光谱谱图

    Figure  3  Infrared spectra of AgY and NaY molecular sieves

    图  4  AgY和NaY分子筛的N2吸附-脱附等温曲线

    Figure  4  N2 adsorption-desorption curves of AgY and NaY molecular sieves

    图  5  吸附温度对AgY分子筛吸附脱除模拟燃料中吡啶、苯胺、喹啉的影响

    Figure  5  Effect of adsorption temperature on the adsorption and removal of pyridine, aniline, and quinoline from model fuels by AgY molecular sieve

    图  6  AgY分子筛12T团簇吸附吡啶、苯胺、喹啉的构型示意图

    Figure  6  Configuration diagram of AgY molecular sieve 12T cluster adsorption for aniline, pyridine, and quinoline

    (Numbers in the figure are the distances between the N atoms in the nitride and the Ag atoms in the AgY molecular sieve; units are nm)

    图  7  吡啶、苯胺、喹啉分子的前线轨道示意图

    Figure  7  Frontline orbitals of pyridine, aniline and quinoline molecules

    图  8  不同温度下AgY分子筛吸附脱吡啶、苯胺、喹啉的等密度分布

    Figure  8  Isodensity distribution diagram of adsorbed adsorption of pyridine, aniline and quinoline on AgY molecular sieve at different temperatures

    图  9  吸附时间对AgY分子筛吸附脱除模拟燃料中吡啶、苯胺、喹啉的影响

    Figure  9  Effect of adsorption time on the adsorption and removal of pyridine, aniline, and quinoline from model fuels by AgY molecular sieve

    图  10  吡啶、苯胺、喹啉与AgY分子筛中Ag原子的径向分布函数

    Figure  10  Radial distribution function between pyridine, aniline, quinoline and Ag atom in AgY molecular sieve

    图  11  AgY分子筛吸附脱除模拟燃料中吡啶、苯胺、喹啉的吸附等温线拟合

    Figure  11  Adsorption isotherms fitting of pyridine, aniline and quinoline in model fuels on AgY molecular sieve

    图  12  AgY分子筛吸附脱除模拟燃料中吡啶、苯胺、喹啉的动力学拟合曲线

    Figure  12  Kinetic fitting curve of adsorption and removal of pyridine, aniline, and quinoline from model fuels using AgY molecular sieve

    表  1  NaY和AgY吸附脱除模拟燃料中吡啶的脱氮性能

    Table  1  Denitrification performance of NaY and AgY molecular sieves for adsorption and removal of pyridine from model fuels

    ProjectNaYAgY
    Adsorption capacity/(mg·g−151.2662.60
    Removal rate/%57.6970.46
    下载: 导出CSV

    表  2  AgY分子筛团簇吸附吡啶、苯胺、喹啉的吸附能

    Table  2  Adsorption energy of AgY molecular sieve clusters for aniline, pyridine and quinoline

    ProjectAdsorption complex
    energy/eV
    Adsorbent energy/eVAdsorbed molecule
    energy/eV
    Adsorption energy/eV
    AgY adsorbed pyridine−172864.913−166114.168−6749.4881.257
    AgY adsorbed aniline−310406.903−302585.559−7818.5462.798
    AgY adsorbed quinoline−177043.348−166113.821−10927.2362.291
    下载: 导出CSV

    表  3  吡啶、苯胺、喹啉与AgY分子筛活性中心的距离d(Ag-N)和前线轨道能量值

    Table  3  Distance d(Ag-N) and frontline orbital energy values of aniline, pyridine, quinoline and AgY molecular sieve active centers

    ProjectHOMO/eVLUMO/eVE/eVd(Ag-N)/nm
    AgY adsorbed pyridine−5.960−2.5753.3853.410
    AgY adsorbed aniline−4.569−1.7102.8592.328
    AgY adsorbed quinoline−7.198−3.1354.0632.777
    下载: 导出CSV

    表  4  三种吸附模型拟合AgY分子筛吸附模吡啶、苯胺、喹啉的相关参数值

    Table  4  Model parameter values of the adsorption for pyridine, aniline, and quinoline on the AgY molecular sieve with three adsorption models

    TemperatureLangmuirFreundlichLangmuir-Freundlich
    qmKL × 105R2nKFR2qmKa × 105nR2
    Pyridine
    303 K142.910.7880.9260.5080.6390.934291.61.7690.6580.986
    323 K185.68.3020.9250.5720.6070.935600.40.5760.6520.980
    343 K171.28.9550.9150.5590.2530.926592.30.4970.6340.982
    Aniline
    293 K650.57.0550.9850.8110.1680.991305241.2760.972
    313 K733.75.9290.9830.8280.1440.989320201.1720.970
    333 K637.56.9370.9830.8110.1440.990320201.1760.974
    Quinoline
    303 K27701.3020.9860.9230.0650.987265261.4410.947
    323 K12233.2800.9890.8850.0920.992250301.5020.956
    343 K10923.7900.9890.8770.0990.99226928.31.4450.965
    下载: 导出CSV

    表  5  热力学模型拟合的相关参数

    Table  5  Relevant parameters for thermodynamic model fitting

    ProjectΔG/(kJ·mol−1)S/(kJ·mol−1·K−1)H/(kJ·mol−1)
    Pyridine
    303 K−28.760.1828.39
    323 K−33.40
    343 K−36.04
    Aniline
    303 K−8.4370.0558.228
    323 K−9.537
    343 K−10.637
    Quinoline
    293 K−3.2730.0202.587
    313 K−3.673
    333 K−4.073
    Note: ΔG is Gibbs free energy; ΔH is enthalpy change; ΔS is entropy change.
    下载: 导出CSV

    表  6  准一级和准二级动力学模型拟合相关参数

    Table  6  Parameters fitted with quasi-first-order and quasi-second-order kinetic models

    ProjectQuasi-first-order kinetic equationQuasi-second-order kinetic equation
    QeK1R2QeK2R2
    Pyridine30.1620.1970.98632.2520.0130.993
    Aniline79.0030.4730.99782.1370.0220.994
    Quinoline63.0122.9360.97564.2340.6270.969
    下载: 导出CSV
  • [1] 梁文杰, 阙国和, 刘晨光, 等. 石油化学(第二版)[M]. 东营: 中国石油大学出版社, 2011: 45-50.

    LIANG Wenjie, QUE Guohe, LIU Chenguang, et al. Petrochemistry(2nd Edition)[M]. Dongying: China University of Petroleum Press, 2011: 45−50.
    [2] 郭凤洁, 帅秋艳, 史晨曦. NaY型分子筛的制备及其对微量铁离子的吸附性能研究[J]. 中国高新科技,2019,(20):29−31. doi: 10.13535/j.cnki.10-1507/n.2019.20.06

    GUO Fengjie, SHUAI Qiuyan, SHI Chenxi. Preparation of NaY-type molecular sieve and its adsorption performance on trace iron ions[J]. China High Sci Technol,2019,(20):29−31. doi: 10.13535/j.cnki.10-1507/n.2019.20.06
    [3] 黄坚, 李先锋, 谢军, 等. 离子交换法改性的NaY分子筛对吸附含硫VOCs的性能提升[J]. 环境工程学报,2022,16(10):3335−3345. doi: 10.12030/j.cjee.202204053

    HUANG Jian, LI Xianxian, XIE Jun, et al. Performance improvement of NaY molecular sieve modified by ion exchange method for adsorption of sulfur-containing VOCs[J]. Chin J Environ Eng,2022,16(10):3335−3345. doi: 10.12030/j.cjee.202204053
    [4] SEYFORTH J. A literature review of the computational methods used to investigate molecular machines[R]. 2016.
    [5] DAUBER-OSGUTHORPE P, ROBERTS V A, OSGUTHORPE D J, et al. Structure and energetics of ligand binding to proteins: Escherichia coli di hydrofolate reductase-trimethoprim, a drug-receptor system[J]. Proteins: Struc, Funct, Bioinform,1988,4(1):31−47. doi: 10.1002/prot.340040106
    [6] 富添, 洪新, 矫宝庆, 等. 杂原子介孔分子筛Ba-MCM-41的制备及其吸附脱氮性能[J]. 石油炼制与化工,2022,53(5):28−35.

    FU Tian, HONG Xin, JIAO Baoqing, et al. Preparation of heteroatom mesoporous zeolite Ba-MCM-41 and its adsorption and nitrogen removal performance[J]. Pet Process Petrochem,2022,53(5):28−35.
    [7] 中国石油化工股份有限公司科技开发部. 石油产品行业标准汇编[M]. 北京: 中国石化出版社, 2005: 402−405.

    Science and Technology Development Department, China Petroleum & Chemical Corporation. Compilation of petroleum products industry standards[M]. Beijing: China Petrochemical Press, 2005: 402−405.
    [8] 黄乐, 郑健, 李强, 等. 正己烷在不同硅铝比HZSM-5分子筛上吸附的分子模拟研究[J]. 石油炼制与化工,2022,53(2):84−92. doi: 10.3969/j.issn.1005-2399.2022.02.014

    HUANG Le, ZHENG Jian, LI Qiang, et al. Molecular simulation study on adsorption of n-hexane on HZSM-5 zeolite with different silicon-aluminum ratios[J]. Pet Process Petrochem,2022,53(2):84−92. doi: 10.3969/j.issn.1005-2399.2022.02.014
    [9] 解国应, 宫玉洁, 周东旭, 等. 改性Y型分子筛吸附脱除模拟油品中氯辛烷[J]. 石油学报(石油加工),2021,37(3):619−625.

    XIE Guoying, GONG Yujie, ZHOU Dongxu, et al. Adsorption and removal of chlorooctane from simulated oil by modified Y-type molecular sieve[J]. Acta Pet Sin (Pet Process),2021,37(3):619−625.
    [10] 何杰, 王宾, 司圣元, 等. AgY分子筛与甲烷中有机硫化物相互作用研究[J]. 安徽理工大学学报(自然科学版),2012,32(4):1−5.

    HE Jie, WANG Bin, SI Shengyuan, et al. Interaction between AgY molecular sieve and organic sulfides in methane[J]. J Anhui Univ Sci Technol (Nat Sci Ed),2012,32(4):1−5.
    [11] 洪新, 唐克. Cr3+改性NaY分子筛的吸附脱氮性能[J]. 燃料化学学报,2016,44(2):251−256.

    HONG Xin, TANG Ke. Adsorption and denitrification performance of Cr3+ modified NaY molecular sieve[J]. J Fuel Chem Technol,2016,44(2):251−256.
    [12] 洪新, 唐克. NaY分子筛的改性及吸附脱氮性能[J]. 燃料化学学报,2015,43(2):214−220.

    HONG Xin, TUN Ke. Modification and adsorption and denitrification performance of NaY molecular sieve[J]. J Fuel Chem Technol,2015,43(2):214−220.
    [13] 徐如人, 庞文琴, 于吉红. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004.

    XU Ruren, PANG Wenqin, YU Jihong. Molecular Sieves and Porous Material Chemistry[M] Beijing: Science Press, 2004.
    [14] 刘飞. NaY、MCM-41分子筛改性及其吸附脱除燃油中有机硫化物的性能[D]. 天津: 天津大学, 2017.

    LIU Fei. Modification of NaY, MCM-41 molecular sieve and their adsorption and removal of organic sulfides from fuel oil[D]. Tianjin: Tianjin University, 2017.
    [15] 王福帅, 李会鹏, 赵华, 等. NaY/β复合分子筛改性及对模拟柴油中氮化物的吸附性能[J]. 石油炼制与化工,2012,43(11):59−62.

    WANG Fushai, LI Huipeng, ZHAO Hua, etc. NaY/β Modification of composite molecular sieves and their adsorption performance for nitrogen compounds in simulated diesel fuel[J]. Pet Ref Chem Ind,2012,43(11):59−62.
    [16] 洪新, 李云赫, 赵永华, 等. Cr3+、Ni2+双离子改性NaY分子筛的吸附脱氮性能[J]. 石油炼制与化工,2018,49(2):18−22.

    HONG Xin, LI Yunhe, ZHAO Yonghua, et al. The adsorption and denitrification performance of Cr3+, Ni2+ double ion modified NaY molecular sieve[J]. Pet Ref Chem Ind,2018,49(2):18−22.
    [17] 石鑫, 姜云瑛, 王洪博, 等. 4种吡嗪类缓蚀剂及其在Cu(111)面吸附行为的密度泛函理论研究[J]. 化工学报,2017,68(8):3211−3217.

    SHI Xin, JIANG Yunying, WANG Hongbo, et al. Density functional theory study on adsorption behavior of four pyrazine corrosion inhibitors and their adsorption behavior on Cu(111) surface[J]. CIESC J,2017,68(8):3211−3217.
    [18] 福井谦一. 化学反应与电子轨道[M]. 北京: 科学出版社, 1985, 24−25.

    Kenichi Fukui. Chemical Reaction and Electron Orbital[M]. Beijing: Science Press, 1985, 24−25.
    [19] 张国. 有机分子在分子筛中的吸附和扩散过程的计算机模拟[D]. 长春: 吉林大学, 2008.

    ZHANG Guo. Computer simulation of adsorption and diffusion process of organic molecules in molecular sieve[D]. Changchun: Jilin University, 2008.
    [20] JIRAPONGPHAN S S, WARZYWODA J, BUDIL D E, et al. Simulation of benzene adsorption in zeolite HY using supercage-based docking[J]. Microporous Mesoporous Mater,2006,94(1/3):358−363. doi: 10.1016/j.micromeso.2006.04.011
    [21] ZHENG H, ZHAO L, YANG Q, et al. Influence of framework protons on the adsorption sites of the benzene/HY system[J]. Ind Eng Chem Res,2014,53(35):13610−13617.
    [22] DANG S, ZHAO L, YANG Q, et al. Competitive adsorption mechanism of thiophene with benzene in FAU zeolite: The role of displacement[J]. Chem Eng J,2017,328:172−185. doi: 10.1016/j.cej.2017.07.011
    [23] GHOUFI A, GABEROVA L, ROUQUEROL J, et al. Adsorption of CO2, CH4 and their binary mixture in Faujasite NaY: A combination of molecular simulations with gravimetry-manometry and microcalorimetry measurements[J]. Microporous Mesoporous Mater,2009,119(1/3):117−128.
    [24] 陈丹. 分子筛限域孔道内扩散行为对产物选择性影响的分子动力学研究[D]. 武汉: 武汉工程大学, 2022.

    CHEN Dan. Molecular dynamics study on the influence of diffusion behavior in molecular sieve confined pores on product selectivity[D]. Wuhan: Wuhan Institute of Technology, 2022.
    [25] LIU Y B, LI Y Z, DING X. Adsorption simulation of basic nitrogen compounds in ZSM-5 and USY zeolites by grand canonical Monte Carlo method[J]. Adv Mater Res,2015,1096(1):189−193.
    [26] 雪霈. 硫化物与烯烃在Y型分子筛中竞争吸附和竞争扩散的分子模拟研究[D]. 北京: 中国石油大学(北京), 2021.

    XUE Pei. Molecular simulation study on competitive adsorption and diffusion of sulfides and olefins in Y-type molecular sieves[D]. Beijing: China University of Petroleum (Beijing), 2021.
    [27] DEHGHANI M, ASGHARI M, ISMAIL A F, et al. Amir H M. Molecular dynamics and Monte Carlo simulation of the structural properties, diffusion and adsorption of poly (amide-6-b-ethylene oxide)/Faujasite mixed matrix membranes[J]. J Mol Liq,2017,242(6):404−415.
    [28] 肖永厚, 周梦雪, 白腾飞, 等. 丙烯在X型分子筛上吸附热力学的Monte Carlo模拟[J]. 石油化工,2018,47(5):420−425. doi: 10.3969/j.issn.1000-8144.2018.05.004

    XIAO Yonghou, ZHOU Mengxue, BAI Tengfei, et al. Monte Carlo simulation of propylene adsorption thermodynamics on X-type zeolite[J]. Petrochem Technol,2018,47(5):420−425. doi: 10.3969/j.issn.1000-8144.2018.05.004
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  50
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-09-12
  • 录用日期:  2023-09-14
  • 网络出版日期:  2023-10-12
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回