留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu/Ce负载对赤泥脱除中低温烟气中NO的促进作用

李扬 徐博 杨赫 靳立军 胡浩权

李扬, 徐博, 杨赫, 靳立军, 胡浩权. Cu/Ce负载对赤泥脱除中低温烟气中NO的促进作用[J]. 燃料化学学报(中英文), 2024, 52(3): 362-372. doi: 10.1016/S1872-5813(23)60388-3
引用本文: 李扬, 徐博, 杨赫, 靳立军, 胡浩权. Cu/Ce负载对赤泥脱除中低温烟气中NO的促进作用[J]. 燃料化学学报(中英文), 2024, 52(3): 362-372. doi: 10.1016/S1872-5813(23)60388-3
LI Yang, XU Bo, YANG He, JIN Lijun, HU Haoquan. Promotion of Cu/Ce supported red mud for NO removal from low and medium temperature flue gas[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 362-372. doi: 10.1016/S1872-5813(23)60388-3
Citation: LI Yang, XU Bo, YANG He, JIN Lijun, HU Haoquan. Promotion of Cu/Ce supported red mud for NO removal from low and medium temperature flue gas[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 362-372. doi: 10.1016/S1872-5813(23)60388-3

Cu/Ce负载对赤泥脱除中低温烟气中NO的促进作用

doi: 10.1016/S1872-5813(23)60388-3
基金项目: 国家重点研发计划(2018YFB0605104), 国家自然科学基金(22278066)和中央高校基本科研业务费(DUT2021TB03)资助
详细信息
    通讯作者:

    Tel: 0411-84986157,E-mail: hhu@dlut.edu.cn

  • 中图分类号: X511

Promotion of Cu/Ce supported red mud for NO removal from low and medium temperature flue gas

Funds: The project was supported by National Key R&D Program of China (2018YFB0605104), National Natural Science Foundation of China (22278066) and The Fundamental Research Funds for the Central Universities (DUT2021TB03)
  • 摘要: 本研究对酸洗赤泥催化剂进行Cu、Ce、Cu/Ce浸渍负载,并研究了金属改性赤泥对烟气中NOx的催化转化性能。研究结果表明,Cu负载催化剂中的Cu+与Cu2+,有效促进了赤泥对低温烟气(200–300 ℃)中的NO转化率,Cu的负载量达到6%时,赤泥的最高NO转化率达到了90.7%;而Ce负载催化剂中的Ce3+与Ce4+,有效促进了赤泥对中温烟气(200–400 ℃)中的NO转化率,Ce的负载量达到8%时,赤泥的最高NO转化率达到了94.0%;Cu/Ce负载催化剂表现出比单金属负载催化剂更好的低温NO转化率,最佳的负载Cu:Ce比例为1∶1,双金属负载催化剂表现出比Cu负载催化剂更好的中温(300–400 ℃)中的NO转化率,最高达到了95.5%。其原因是,在Cu/Ce协同作用下,Cu+以及Cu2+的还原过程分别从229、302 ℃降至201以及247 ℃,同时使发生Fe2O3→FeO的还原过程的温度降低,促使ACRM-Cu1Ce1具有更强的低温氧化还原能力,同时,双金属负载使催化剂具有更高的弱酸性峰,也使催化剂的强、弱酸性峰都向低温偏移,并使负载后的赤泥具有了较高的Fe离子平均氧化态以及较高的Cu+含量,促进了赤泥催化剂对低温NO的转化率。
  • FIG. 3015.  FIG. 3015.

    FIG. 3015.  FIG. 3015.

    图  1  实验装置流程示意图

    Figure  1  Schematic diagram of experimental apparatus

    图  2  Cu负载量对催化剂NO转化率的影响(BFG)

    Figure  2  The effect of Cu supporting on the NO conversion rate of catalysts (BFG)

    图  3  Ce负载量对催化剂NO转化率的影响(BFG)

    Figure  3  The effect of Ce supporting on the NO conversion rate of catalysts (BFG)

    图  4  Cu/Ce负载比例对催化剂NO转化率的影响(BFG)

    Figure  4  The effect of Cu/Ce supporting ratio on the NO conversion rate of catalysts (BFG)

    图  5  不同催化剂的NO转化率(BFG)

    Figure  5  NO conversion rate of different catalysts (BFG)

    图  6  负载金属催化剂的等温吸附曲线与孔径分布

    Figure  6  Isothermal adsorption curves and pore size distribution of the supported catalysts

    (a), (b) and (c) are the isothermal adsorption curves of Cu supported, Ce supported and Cu/Ce supported catalysts, respectively; (d), (e) and (f) are the pore size distribution of the corresponding catalysts.

    图  7  负载催化剂的XRD谱图

    Figure  7  XRD patterns of supported catalysts

    图  8  负载催化剂的H2-TPR谱图

    Figure  8  H2-TPR profiles of supported catalysts

    图  9  负载催化剂的NH3-TPD谱图

    Figure  9  NH3-TPR prefiles of supported catalysts

    图  10  负载催化剂的Fe 2p谱图

    Figure  10  Fe 2p spectra of supported catalysts

    (a): ACRM; (b): ACRM-Cu6; (c): ACRM-Ce8; (d): ACRM-Cu1Ce1.

    图  11  金属负载催化剂的Cu 2p谱图

    Figure  11  Cu 2p spectra of supported catalyst

    (a): ACRM-Cu6; (b): ACRM-Cu1Ce1.

    图  12  金属负载催化剂的Ce 3d谱图

    Figure  12  Ce 3d spectra of supported catalysts

    (a): ACRM-Ce8; (b): ACRM-Cu1Ce1.

    图  13  负载催化剂的O 1s谱图

    Figure  13  O 1s spectra of supported catalysts

    (a): ACRM; (b): ACRM-Cu6; (c): ACRM-Ce8; (d): ACRM-Cu1Ce1.

    表  1  赤泥的组成分析

    Table  1  Analysis of the composition of red mud

    SampleFe2O3Al2O3SiO2TiO2Na2OOthers
    RM/%42.021.322.53.76.93.6
    下载: 导出CSV

    表  2  催化剂的比表面积与孔径分布

    Table  2  Surface area and pore size distribution of catalysts

    SampleSBET/(m2·g−1)vt/(cm3·g−1)dave/nm
    ACRM-Cu1510.1559.3
    ACRM-Cu2530.1689.8
    ACRM-Cu4450.1499.7
    ACRM-Cu6440.15610.3
    ACRM-Cu8420.14914.2
    ACRM-Ce1500.1729.8
    ACRM-Ce2540.1629.6
    ACRM-Ce4490.1489.4
    ACRM-Ce6490.1479.6
    ACRM-Ce8500.1379.2
    ACRM-Cu3Ce1420.14610.7
    ACRM-Cu2Ce1410.15411.5
    ACRM-Cu1Ce1430.13710.1
    ACRM-Cu1Ce2450.13910.0
    ACRM-Cu1Ce3480.1439.4
    下载: 导出CSV
  • [1] CHEN C, CAO Y, LIU S, et al. Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J]. Chin J Catal,2018,39(8):1347−1365. doi: 10.1016/S1872-2067(18)63090-6
    [2] KANG M, PARK E, KIM J, et al. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Appl Catal A: Gen,2007,327(2):261−269. doi: 10.1016/j.apcata.2007.05.024
    [3] FAN J, NING P, SONG Z, et al. Mechanistic aspects of NH3-SCR reaction over CeO2/TiO2-ZrO2-SO42- catalyst: In situ DRIFTS investigation[J]. Chem Eng J,2018,334:855−863. doi: 10.1016/j.cej.2017.10.011
    [4] Huang L, ZENG Y, CHANG Z, et al. Promotional effect of phosphorus modification on improving the Na resistance of V2O5-MoO3/TiO2 catalyst for selective catalytic reduction of NOx by NH3[J]. Mol Catal,2021,506:111565. doi: 10.1016/j.mcat.2021.111565
    [5] ZHANG K, XU L, NIU S, et al. Iron-manganese-magnesium mixed oxides catalysts for selective catalytic reduction of NOx with NH3[J]. Korean J Chem Eng,2017,34(6):1858−1866. doi: 10.1007/s11814-017-0047-8
    [6] XU L, NIU S, LU C, et al. NH3-SCR performance and characterization over magnetic iron-magnesium mixed oxide catalysts[J]. Korean J Chem Eng,2017,34(5):1576−1583. doi: 10.1007/s11814-017-0044-y
    [7] QIU Y, LIU B, DU J, et al. The monolithic cordierite supported V2O5-MoO3/TiO2 catalyst for NH3-SCR[J]. Chem Eng J,2016,294:264−272. doi: 10.1016/j.cej.2016.02.094
    [8] WANG D, LUO J, YANG Q, et al. Deactivation mechanism of multipoisons in cement furnace flue gas on selective catalytic reduction catalysts[J]. Environ Sci Technol,2019,53(12):6937−6944. doi: 10.1021/acs.est.9b00337
    [9] MACHIDA M, TOKUDOME Y, MAEDA A, et al. Nanometric platinum overlayer to catalyze NH3 oxidation with high turnover frequency[J]. ACS Catal,2020,10(8):4677−4685. doi: 10.1021/acscatal.0c00542
    [10] MA H, SCHNEIDER W. Structure- and temperature-dependence of Pt-catalyzed ammonia oxidation rates and selectivities[J]. ACS Catal,2019,9(3):2407−2414. doi: 10.1021/acscatal.8b04251
    [11] SUN M, LIU J, SONG C, et al. Different reaction mechanisms of ammonia oxidation reaction on Pt/Al2O3 and Pt/CeZrO2 with Various Pt States[J]. ACS Appl Mater Interfaces,2019,11(26):23102−23111. doi: 10.1021/acsami.9b02128
    [12] LI P, ZHANG R, LIU N, et al. Efficiency of Cu and Pd substitution in Fe-based perovskites to promote N2 formation during NH3 selective catalytic oxidation (NH3-SCO)[J]. Appl Catal B: Environ,2017,203:174−188. doi: 10.1016/j.apcatb.2016.10.021
    [13] SHIN J, KIM G, HONG S. Reaction properties of ruthenium over Ru/TiO2 for selective catalytic oxidation of ammonia to nitrogen[J]. Appl Surf Sci,2020,506:144906. doi: 10.1016/j.apsusc.2019.144906
    [14] LIU Z, ZHU J, LI J, et al. Novel Mn-Ce-Ti mixed-oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. ACS Appl Mater Interfaces,2014,6(16):14500−14508. doi: 10.1021/am5038164
    [15] PAREDES J, ORDONEZ S, VEGA A, et al. Catalytic combustion of methane over red mud-based catalysts[J]. Appl Catal B: Environ,2004,47(1):37−45. doi: 10.1016/S0926-3373(03)00325-4
    [16] LIU Z, SU H, CHEN B, et al. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3[J]. Chem Eng J, 2016, 299: 255−262: 119186.
    [17] LEE S, JANG J, LEE B, et al. The effect of binders on structure and chemical properties of Fe-K/gamma-Al2O3 catalysts for CO2 hydrogenation[J]. Appl Catal A: Gen,2003,253(1):293−304. doi: 10.1016/S0926-860X(03)00540-4
    [18] SONG S, JIANG S. Selective catalytic oxidation of ammonia to nitrogen over CuO/CNTs: The promoting effect of the defects of CNTs on the catalytic activity and selectivity[J]. Appl Catal B: Environ,2012,117:346−350.
    [19] CHEN S, VASILIADES M, YAN Q, et al. Remarkable N2-selectivity enhancement of practical NH3-SCR over Co0.5Mn1Fe0.25Al0.75Ox-LDO: The role of Co investigated by transient kinetic and DFT mechanistic studies[J]. Appl Catal B: Environ,2020,277:119186.
    [20] RUTKOWSKA M, DUDA M, MACINA D, et al. Mesoporous beta zeolite functionalisation with FexCry oligocations; catalytic activity in the NH3-SCO process[J]. Microporous Mesoporous Mater,2019,278:1−13. doi: 10.1016/j.micromeso.2018.11.003
    [21] CAMPISI S, PALLIGGIANO S, GERVASINI A, et al. Finely iron-dispersed particles on beta zeolite from solvated iron atoms: Promising catalysts for NH3-SCO[J]. J Phys Chem C,2019,123(18):11723−11733. doi: 10.1021/acs.jpcc.9b01474
    [22] 郑足红, 童华, 童志权, 等. Mn-V-Ce/TiO2低温催化还原NO性能研究[J]. 燃料化学学报(中英文),2010,38(3):343−351.

    ZHENG Zuhong, TONG Hua, TONG Zhiquan, et al. Catalytic reduction of NO over Mn-V-Ce/TiO2 catalysts at low reaction temperature[J]. J Fuel Chem Technol,2010,38(3):343−351.
    [23] LIPPITS M, GLUHOI A, NIEUWENHUYS B. A comparative study of the selective oxidation of NH3 to N2 over gold, silver and copper catalysts and the effect of addition of Li2O and CeOx[J]. Catal Today,2008,137(2/4):446−452. doi: 10.1016/j.cattod.2007.11.021
    [24] LIU W, LONG Y, LIU S, et al. Promotional effect of Ce in NH3-SCO and NH3-SCR reactions over Cu-Ce/SCR catalysts[J]. J Ind Eng Chem,2022,107:197−206. doi: 10.1016/j.jiec.2021.11.045
    [25] 王继封, 王慧敏, 张亚青, 等. WO3的引入对MnOx-Fe2O3催化剂上NH3-SCR反应中N2选择性的促进作用[J]. 燃料化学学报(中英文),2019,47(7):814−822.

    WANG Jifeng, WANG Huimin, ZHANG Yaqing, et al. Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR[J]. J Fuel Chem Technol,2019,47(7):814−822.
    [26] 王明洪, 王亮亮, 刘俊, 等. 过渡金属对选择性催化还原脱硝CeO2@TiO2催化剂低温活性的促进作用[J]. 燃料化学学报(中英文),2017,45(4):497−504.

    WANG Minghong, WANG Liangliang, LIU Jun, et al. Promoting effect of transition metal on low-temperature deNOx activity of CeO2@TiO2 catalyst for selective catalytic reduction[J]. J Fuel Chem Technol,2017,45(4):497−504.
    [27] DE RESENDE E, GISSANE C, NICOL R, et al. Synergistic co-processing of red mud waste from the bayer process and a crude untreated waste stream from bio-diesel production[J]. Green Chem,2013,15(2):496−510. doi: 10.1039/c2gc36714a
    [28] WU J, GONG Z, LU C, et al. Preparation and performance of modified red mud-based catalysts for selective catalytic reduction of NOx with NH3[J]. Catal,2018,8(1):35.
    [29] LYU F, HU Y, WANG L, et al. Dealkalization processes of bauxite residue: A comprehensive review[J]. J Hazard Mater,2021,403:123671. doi: 10.1016/j.jhazmat.2020.123671
    [30] WANG D, PENG Y, XIONG S, et al. De-reducibility mechanism of titanium on maghemite catalysts for the SCR reaction: An in situ DRIFTS and quantitative kinetics study[J]. Appl Catal B: Environ,2018,221:556−564. doi: 10.1016/j.apcatb.2017.09.045
    [31] GONG Z, MA J, WANG D, et al. Insights into modified red mud for the selective catalytic reduction of NOx: Activation mechanism of targeted leaching[J]. J Hazard Mater,2020,394:122536. doi: 10.1016/j.jhazmat.2020.122536
    [32] MENG Y, LIU W, FIEDLER H, et al. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front Environ Sci Eng,2021,15(5):104. doi: 10.1007/s11783-021-1392-8
    [33] 康海彦, 莫杜娟, 张学军, 等. CeO2-WO3催化剂表面酸性和氧化还原性能在脱硝反应中的研究[J]. 燃料化学学报(中英文),2023,51(6):812−822. doi: 10.19906/j.cnki.JFCT.2023005

    KANG Haiyan, MO Dujuan, ZHANG Xuejun, et al. Investigation of the surface acidity and redox on the CeO2-WO3 catalyst for selective catalytic reduction with NH3[J]. J Fuel Chem Technol,2023,51(6):812−822. doi: 10.19906/j.cnki.JFCT.2023005
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  52
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-06-24
  • 录用日期:  2023-06-25
  • 网络出版日期:  2023-10-31
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回