留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced electro-catalytic activity of TNTs/SnO2-Sb electrode through the effect mechanism of TNTs architecture

YANG Lisha GUO Yanming

杨莉莎, 郭颜铭. TNTs结构强化TNTs/SnO2-Sb电极电催化活性的影响机制[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60390-1
引用本文: 杨莉莎, 郭颜铭. TNTs结构强化TNTs/SnO2-Sb电极电催化活性的影响机制[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60390-1
YANG Lisha, GUO Yanming. Enhanced electro-catalytic activity of TNTs/SnO2-Sb electrode through the effect mechanism of TNTs architecture[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60390-1
Citation: YANG Lisha, GUO Yanming. Enhanced electro-catalytic activity of TNTs/SnO2-Sb electrode through the effect mechanism of TNTs architecture[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60390-1

TNTs结构强化TNTs/SnO2-Sb电极电催化活性的影响机制

doi: 10.1016/S1872-5813(23)60390-1
详细信息
  • 中图分类号: X703.1

Enhanced electro-catalytic activity of TNTs/SnO2-Sb electrode through the effect mechanism of TNTs architecture

Funds: The project was supported by National Natural Science Foundation of China (52000061).
More Information
  • 摘要: 采用溶剂热法制备了TNTs/SnO2-Sb电极,通过调整氧化电压和氧化时间构建出不同结构的二氧化钛纳米管(TNTs)阵列,以探究其对电极结构和电化学性能的影响。SEM和接触角测试表明,相较于阳极氧化时间,阳极氧化电压是影响TNTs阵列形貌和表面亲水性的主要因素。SEM、XRD、LSV和EIS结果表明,TNTs阵列孔径的大小影响了催化涂层的形貌、晶粒尺寸以及电极的析氧电位。XPS、EPR和羟基自由基(·OH)生成测试表明,涂层表面致密且粒径较小有利于电极表面获得更多的氧空位,且氧空位浓度越高,吸附氧物种越多,从而增强了活性自由基的形成以及对有机物的降解。以长度950 nm,孔径100 nm 的TNTs 阵列层为基底时,所制备的电极TNTs (25 V) / SnO2-Sb展现出了最佳的苯酚处理效果(92%±4.6%,2 h)。
  • Figure  1  TNTs substrate architectures under different preparation conditions ((a) 15V-1h, (b) 15V-2h, (c) 15V-3h, (d) 20V-1h, (e) 20V-2h, (f) 20V-3h, (g) 25V-1h, (h) 25V-2h, (i) 25V-3h, (j) 30V-1h, (k) 30V-2h, (l) 30V-3h)

    Figure  2  Contact angle of (a) Ti, (b) TNTs (15 V-2 h), (c) TNTs (20 V-2 h), (d) TNTs (25 V-2 h), (e) TNTs (30 V-2 h), (f) TNTs (25 V-1 h) and (g) TNTs (25 V-3 h)

    Figure  3  SEM images of (a) Ti/SnO2-Sb, (b) TNTs (15 V)/SnO2-Sb, (c) TNTs (20 V)/SnO2-Sb, (d) TNTs (25 V)/SnO2-Sb electrode, (e) TNTs (30 V)/SnO2-Sb electrode

    Figure  4  XRD patterns of (a) TNTs (25 V) substrate and (b) TNTs/SnO2-Sb electrodes with different substrate preparation voltages

    Figure  5  OEP of TNTs/SnO2-Sb electrodes with different substrate preparation voltages

    Figure  6  EIS spectrums of TNTs/SnO2-Sb electrodes with different substrate preparation voltages

    Figure  7  Electrochemical degradation of phenol on TNTs/SnO2-Sb electrodes with TNTs substrates under different preparation conditions ((a) Variations of concentration of phenol with electrolysis time, (b) The first-order kinetics curves of phenol degradation)

    Figure  8  XPS pattern of Sn 3d of SnO2-Sb different electrodes

    Figure  9  XPS patterns of the fitted curves of O 1s and Sb 3d of electrodes prepared by different voltages

    Figure  10  EPR spectra of TNTs/SnO2-Sb electrodes with different substrate preparation voltages

    Figure  11  The hydroxyl radicals generation ability on the SnO2-Sb electrode with different substrate preparation voltages

    Figure  12  The quenching experiment of the active radicals on the SnO2-Sb electrodes with different substrate preparation voltages

    Table  1  Effect of preparation conditions for TNTs arrays on the average crystal size of SnO2-Sb calculated by Scherrer formula

    SampleCrystallite size/nm
    Ti/SnO2-Sb23±0.3
    TNTs (15 V)/SnO2-Sb20±0.3
    TNTs (20 V)/SnO2-Sb17±0.4
    TNTs (25 V)/SnO2-Sb15±0.3
    TNTs (30 V)/SnO2-Sb13±0.4
    Scherrer formula: D=kλ/(βcosθ), where D is the crystallite size, k is the Scherrer constant (0.89), λ is the wavelength of incident ray, β is the full width at half maximum of the peak, and θ is the position of plane peak[30].
    下载: 导出CSV

    Table  2  EIS fitting results of TNTs/SnO2-Sb electrodes with different substrate preparation voltages

    SampleRsCh/FRhCt/FRt
    Ti/SnO2-Sb4.725.33×10−849.32.02×10−549
    TNTs (15 V)/SnO2-Sb4.715.62×10−847.62.06×10−548
    TNTs (20 V)/SnO2-Sb4.695.84×10−846.92.11×10−547
    TNTs (25 V)/SnO2-Sb4.676.33×10−844.32.20×10−545
    TNTs (30 V)/SnO2-Sb4.746.12×10−845.42.16×10−546
    下载: 导出CSV

    Table  3  Effect of preparation voltage of TNTs arrays on the contact angle of substrate surface and loading amount of SnO2-Sb

    SampleContact angle/(°)Loading amount/(mg·cm−2)
    Ti522.05±0.05
    TNTs (15 V-2 h)432.15±0.04
    TNTs (20 V-2 h)342.24±0.04
    TNTs (25 V-2 h)132.36±0.03
    TNTs (30 V-2 h)102.42±0.02
    下载: 导出CSV

    Table  4  XPS analysis of TNTs/SnO2-Sb electrodes with different substrate preparation voltages

    SampleBinding energy/eVOads
    (at% = $\dfrac{\rm{O}_{\mathrm{a}\mathrm{d}\mathrm{s} }}{\mathrm{S}\mathrm{n} + \mathrm{S}\mathrm{b} + \mathrm{O}_{\mathrm{a}\mathrm{d}\mathrm{s}} + \mathrm{O}_{\mathrm{l}\mathrm{a}\mathrm{t} }}$ × 100% )
    Atom ratio of Olat/(Sn + Sb)
    Sn 3d5/2Sb 3d5/2OadsOlat
    Control486.91530.89532.03530.7314.62.65
    15 V486.84530.90531.98530.6917.92.41
    20 V486.46531.19531.96530.6419.82.18
    25 V486.21531.12531.89530.5525.61.88
    30 V486.35530.94531.91530.5923.21.97
    下载: 导出CSV

    Table  5  The computed result from the quenching experiment

    SampleThe contribution to phenol degradation/%
    ·O2 ·OH
    Control42.174
    15 V45.776.3
    20 V4779
    25 V50.584
    30 V48.681
    下载: 导出CSV
  • [1] FENG Y J, YANG L S, LIU J F, et al. Electrochemical technologies for wastewater treatment and resource reclamation[J]. Environ Sci: Water Res Technol,2016,2(5):800−831. doi: 10.1039/C5EW00289C
    [2] DBIRA S, BENSALAH N, AHMAD M I, et al. Electrochemical oxidation/disinfection of urine wastewaters with different anode materials[J]. Materials,2019,12(8):1254. doi: 10.3390/ma12081254
    [3] NIDHEESH P V, KUMAR A, BABU D S, et al. Treatment of mixed industrial wastewater by electrocoagulation and indirect electrochemical oxidation[J]. Chemosphere,2020,251:126437. doi: 10.1016/j.chemosphere.2020.126437
    [4] SUMAN H, SANGAL V K, VASHISHTHA M. Treatment of tannery industry effluent by electrochemical methods: A review[J]. Mater Today: Proc,2021,47:1438−1444. doi: 10.1016/j.matpr.2021.03.300
    [5] RAI D, SINHA S. Research trends in the development of anodes for electrochemical oxidation of wastewater[J]. Rev Chem Eng.,2023,39(5):807−855. doi: 10.1515/revce-2021-0067
    [6] PATEL P S, BANDRE N, SARAF A, et al. Electro-catalytic materials (electrode materials) in electrochemical wastewater treatment[J]. Proc Eng,2013,51:430−435. doi: 10.1016/j.proeng.2013.01.060
    [7] WU W, HUANG Z H, LIM T T. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water[J]. Appl Catal A: Gen,2014,480:58−78. doi: 10.1016/j.apcata.2014.04.035
    [8] TOLBA R, TIAN M, WEN J, et al. Electrochemical oxidation of lignin at IrO2-based oxide electrodes[J]. J Electroanal Chem,2010,649(1/2):9−15. doi: 10.1016/j.jelechem.2009.12.013
    [9] ZHU X, HU W W, FENG C P, et al. Electrochemical oxidation of aniline in sodium chloride solution using a Ti/RuO2 anode[J]. Int J Electrochem Sci,2019,14(8):7516−7528. doi: 10.20964/2019.08.36
    [10] ZHANG Z T, YI G Y, LI P, et al. Electrochemical oxidation of hydroquinone using Eu-doped PbO2 electrodes: Electrode characterization, influencing factors and degradation pathways[J]. J Electroanal Chem,2021,895:115493. doi: 10.1016/j.jelechem.2021.115493
    [11] CAO F, TAN J, ZHANG S, et al. Preparation and recent developments of Ti/SnO2-Sb electrodes[J]. J Chem,2021,12:1−13.
    [12] GATTRELL M, KIRK D W. A study of electrode passivation during aqueous phenol electrolysis[J]. J Electrochem Soc,1993,140(4):903. doi: 10.1149/1.2056225
    [13] SARHAN JAWAD S, H ABBAR A. Treatment of petroleum refinery wastewater by electrochemical oxidation using graphite anodes[J]. QJES,2019,12(3):144−150.
    [14] ZHUO Q, WANG J, NIU J, et al. Electrochemical oxidation of perfluorooctane sulfonate (PFOS) substitute by modified boron doped diamond (BDD) anodes[J]. Chem Eng J,2020,379:122280. doi: 10.1016/j.cej.2019.122280
    [15] GAO G, VECITIS C D. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry[J]. Environ Sci Technol,2011,45(22):9726−9734. doi: 10.1021/es202271z
    [16] CUI Y H, FENG Y J, LIU Z Q. Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb-SnO2 electrodes[J]. Electrochim Acta,2009,54(21):4903−4909. doi: 10.1016/j.electacta.2009.04.041
    [17] NHAN N T, LE LUU T. Fabrication of novel Ti/SnO2-Nb2O5 electrode in comparison with traditional doping metal oxides for electrochemical textile wastewater treatment[J]. Environ Technol Innov,2023,32:103292. doi: 10.1016/j.eti.2023.103292
    [18] LI X, SHAO D, XU H, et al. Fabrication of a stable Ti/TiOxHy/Sb-SnO2 anode for aniline degradation in different electrolytes[J]. Chem Eng J,2016,285:1−10. doi: 10.1016/j.cej.2015.09.089
    [19] BRAVO-YUMI N, PACHECO-ÁLVAREZ M, BANDALA E R, et al. Studying the influence of different parameters on the electrochemical oxidation of tannery dyes using a Ti/IrO2-SnO2-Sb2O5 anode[J]. Chem Eng Process,2022,181:109173. doi: 10.1016/j.cep.2022.109173
    [20] SHAO M Y, HU B, GE S Y, et al. Fabrication of Ti/TiO2/SnO2-Sb-Ir/SnO2-Sb-Ni using three kinds of TiO2 interlayer and an optimized TiO2-nanotube interlayer-based anode for electrochemical treatment of wastewater[J]. J Electron Mater,2023,52(2):907−916. doi: 10.1007/s11664-022-10070-6
    [21] CHEN D Y, ZHAO L, CHEN D N, et al. Fabrication of a SnO2-Sb electrode with TiO2 nanotube array as the middle layer for efficient electrochemical oxidation of amaranth dye[J]. Chemosphere,2023,325:138380. doi: 10.1016/j.chemosphere.2023.138380
    [22] MOR G K, VARGHESE O K, PAULOSE M, et al. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films[J]. Adv Funct Mater,2005,15(8):1291−1296. doi: 10.1002/adfm.200500096
    [23] XU L, YI Y, LIANG G, et al. Antimony doped tin oxide nanoparticles deposited onto Nb-TiO2 nanotubes for electrochemical degradation of bio-refractory pollutions[J]. Electroanalysis,2020,32(6):1370−1378. doi: 10.1002/elan.201900775
    [24] WANG G X, ZHANG H L, WANG W Z, et al. Fabrication of Fe-TiO2-NTs/SnO2-Sb-Ce electrode for electrochemical degradation of aniline[J]. Sep Purif Technol,2021,268:118591. doi: 10.1016/j.seppur.2021.118591
    [25] ZHANG Z, LIU J, AI H, et al. Construction of the multi-layer TiO2-NTs/Sb-SnO2/PbO2 electrode for the highly efficient and selective oxidation of ammonia in aqueous solution: Characterization, performance and mechanism[J]. J Environ Chem Eng,2023,11(3):109834. doi: 10.1016/j.jece.2023.109834
    [26] CHEN Y, HONG L, XUE H, et al. Preparation and characterization of TiO2-NTs/SnO2-Sb electrodes by electrodeposition[J]. J Electroanal Chem,2010,648(2):119−127. doi: 10.1016/j.jelechem.2010.08.004
    [27] XU H, ZHANG Q, YAN W, et al. A composite Sb-doped SnO2 electrode based on the TiO2 nanotubes prepared by hydrothermal synthesis[J]. Int J Electrochem Sci,2011,6(12):6639−6652. doi: 10.1016/S1452-3981(23)19708-2
    [28] GUO Y, DUAN T, CHEN Y, et al. Solvothermal fabrication of three-dimensionally sphere-stacking Sb-SnO2 electrode based on TiO2 nanotube arrays[J]. Ceram Int,2015,41(7):8723−8729. doi: 10.1016/j.ceramint.2015.03.092
    [29] WANG Q, JIN T, HU Z, et al. TiO2-NTs/SnO2-Sb anode for efficient electrocatalytic degradation of organic pollutants: effect of TiO2-NTs architecture[J]. Sep Purif Technol,2013,102:180−186. doi: 10.1016/j.seppur.2012.10.006
    [30] YANG L S, ZHANG Z H, LIU J F, et al. Influence of Gd doping on the structure and electrocatalytic performance of TiO2 nanotube/SnO2-Sb nano‐coated electrode[J]. Chem Electro Chem,2018,5(22):3451−3459. doi: 10.1002/celc.201801079
    [31] YANG L S, LIU J F, HUANG L L, et al. Fabrication of nano-structured stacked sphere SnO2-Sb electrode with enhanced performance using a situ solvothermal synthesis method[J]. J Electrochem Soc,2018,165(5):E208. doi: 10.1149/2.0711805jes
    [32] BARAN E, YAZICI B. Fabrication of TiO2-NTs and TiO2-NTs covered honeycomb lattice and investigation of carrier densities in I/I3− electrolyte by electrochemical impedance spectroscopy[J]. Appl Surf Sci,2015,357:2206−2216. doi: 10.1016/j.apsusc.2015.09.212
    [33] LIU J F. Investigation on preparation and performance of Ti-base tin dioxide nanocoating electrode doped by antimony[D]. Harbin: University of Harbin Institute of Technology, 2008.
    [34] ZHAO G H, CUI X, LIU M C, et al. Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode[J]. Environ Sci Technol,2009,43(5):1480−1486. doi: 10.1021/es802155p
    [35] CUI X, ZHAO G H, LEI Y Z, et al. Novel vertically aligned TiO2 nanotubes embedded with Sb-doped SnO2 electrode with high oxygen evolution potential and long service time[J]. Mater Chem Phys,2009,113(1):314−321. doi: 10.1016/j.matchemphys.2008.07.087
    [36] CUI Y H, FENG Y J. EPR study on Sb doped Ti-base SnO2 electrodes[J]. J Mater Sci,2005,40(17):4695−4697. doi: 10.1007/s10853-005-3930-3
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  28
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2023-09-25
  • 录用日期:  2023-09-26
  • 网络出版日期:  2023-10-31

目录

    /

    返回文章
    返回