留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance of Cu-Mn-Zn/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: The effect of Zn content

WANG Shiwei YANG Jinhai ZHOU Hongli XIAO Fukui ZHAO Ning

王世威, 杨金海, 周宏利, 肖福魁, 赵宁. Zn含量对于Cu-Mn-Zn/ZrO2催化剂CO2加氢合成甲醇性能的影响研究[J]. 燃料化学学报(中英文), 2024, 52(3): 293-304. doi: 10.1016/S1872-5813(23)60391-3
引用本文: 王世威, 杨金海, 周宏利, 肖福魁, 赵宁. Zn含量对于Cu-Mn-Zn/ZrO2催化剂CO2加氢合成甲醇性能的影响研究[J]. 燃料化学学报(中英文), 2024, 52(3): 293-304. doi: 10.1016/S1872-5813(23)60391-3
WANG Shiwei, YANG Jinhai, ZHOU Hongli, XIAO Fukui, ZHAO Ning. Performance of Cu-Mn-Zn/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: The effect of Zn content[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 293-304. doi: 10.1016/S1872-5813(23)60391-3
Citation: WANG Shiwei, YANG Jinhai, ZHOU Hongli, XIAO Fukui, ZHAO Ning. Performance of Cu-Mn-Zn/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: The effect of Zn content[J]. Journal of Fuel Chemistry and Technology, 2024, 52(3): 293-304. doi: 10.1016/S1872-5813(23)60391-3

Zn含量对于Cu-Mn-Zn/ZrO2催化剂CO2加氢合成甲醇性能的影响研究

doi: 10.1016/S1872-5813(23)60391-3
详细信息
  • 中图分类号: O643

Performance of Cu-Mn-Zn/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: The effect of Zn content

Funds: The project was supported by Fundamental Research Program of Shanxi Province (202203021221303), Science and Technology Major Project of Shanxi Province (202005D121002), The Central Project Guide Local Science and Technology for Development (2020SW26).
More Information
  • 摘要: 通过溶胶-凝胶方法制备了一系列不同Zn含量的Cu-Mn-Zn/ZrO2催化剂,并通过XRD、BET、TPR、N2O吸附、XPS、TPD和 in-situ DRIFTS进行了表征。结果表明,随着Zn含量增加,催化剂上CO2加氢反应的活性增加。在所有样品中,Cu3MnZn0.5Zr0.5(CMZZ-0.5)在250 ℃和5 MPa条件下具有最高的CO2转化率(6.5%)和甲醇选择性(73.7%)。表征结果表明,Zn进入Cu1.5Mn1.5O4尖晶石结构,形成ZnOx,导致催化剂表面羟基含量的增加,同时增加了Cu0和Cuα+的含量,改善了H2和CO2的活化能力。此外,通过原位漫反射红外光谱研究了 CO2转化为甲醇的途径。
  • FIG. 3008.  FIG. 3008.

    FIG. 3008.  FIG. 3008.

    Figure  1  (a) TEM, (b) HR-TEM images and (c) relevant element mapping of the reduced Cu3MnZn0.5Zr0.5 catalysts

    Figure  2  XRD patterns of the fresh (a) and reduced (b) catalysts

    Figure  3  N2 adsorption-desorption isotherms (a) and pore size distribution (b) of the CMZZ-X catalysts

    Figure  4  XPS spectra for (a) Cu LMM, (b) Zn LMM,(c) C 1s, (d) O 1s of the CMZZ-X catalysts

    Figure  5  H2-TPR profiles of the CMZZ-X catalysts

    Figure  6  CO2-TPD profiles of the CMMZ-X catalysts

    Figure  7  H2-TPD profiles (a) and the amount of H2 desorption (b) of CMZZ-X catalysts

    Figure  8  The relationships between desorbed H2 and CO2 conversion (250 °C)

    Figure  9  The relationship between the TOF and the content of OOH

    Figure  10  In-situ DRIFTS spectra of CO2 hydrogenation over CMZZ-0 (a), CMZZ-0.25 (b), and CMZZ-0.5 (c), and CMZZ-1.5 (d) at 250 °C

    Figure  11  In-situ DRIFTS spectra of the reduction process for CMZZ-0 (a), CMZZ-0.25 (c), and introduction of CO2 over CMZZ-0 (b) and CMZZ-0.5 (d) at 250 °C

    Figure  12  Proposed reaction mechanism of CO2 hydrogenation to methanol over CMZZ-X catalysts

    Table  1  Texture parameters of the CMZZ-X catalysts

    CatalystABET*
    /(m2·g−1)
    Pore volume*
    /(cm3·g−1
    Pore size*/nmDCu**
    /%
    ACu**
    /(m2·g−1)
    dCu**
    /nm
    CMZZ-010.60.08532.75.53.718.3
    CMZZ-0.259.90.04824.87.95.412.6
    CMZZ-0.58.10.06928.610.47.09.6
    CMZZ-17.70.03326.77.85.312.8
    CMZZ-1.55.10.04727.26.34.315.9
    *: The data were obtained by N2 adsorption-desorption experiment; **: The data were calculated by N2O adsorption-desorption experiment.
    下载: 导出CSV

    Table  2  Bulk/surface elemental percentages (% molar ratio) of the CMZZ-X catalysts

    CatalystCu Mn Zn Zr
    bulk*surface**bulksurfacebulksurfacebulksurface
    CMZZ-077.945.3 18.635.8 0.11.9 3.417.0
    CMZZ-0.2568.731.925.248.93.56.42.612.8
    CMZZ-0.573.633.914.632.19.512.62.321.4
    CMZZ-163.533.318.938.313.316.74.311.7
    CMZZ-1.563.026.414.628.318.120.84.324.5
    *: calculated from ICP; **: calculated from XPS.
    下载: 导出CSV

    Table  3  The relative surface concentration of Cu of the catalysts

    CatalystMolar ratio/%
    Cu0/CuCuα+/CuCu+/CuCu2+/Cu
    CMZZ-034.516.834.214.5
    CMZZ-0.2538.220.332.39.2
    CMZZ-0.540.822.328.08.9
    CMZZ-140.122.728.38.9
    CMZZ-1.538.821.329.510.4
    下载: 导出CSV

    Table  4  The relative surface concentration of Zn of the catalysts

    CatalystMolar ratio/%
    Zn0/ZnZn2+/Zn
    CMZZ-0
    CMZZ-0.259.190.9
    CMZZ-0.516.783.3
    CMZZ-119.980.1
    CMZZ-1.520.979.1
    下载: 导出CSV

    Table  5  Relative surface concentration of C of the catalysts

    CatalystMolar ratio/%
    ${\rm{CO}}_3^{2-} $/(${\rm{CO}}_3^{2-} $+C)C/(${\rm{CO}}_3^{2-} $+C)
    CMZZ-012.387.7
    CMZZ-0.2511.988.1
    CMZZ-0.512.387.7
    CMZZ-112.187.9
    CMZZ-1.512.487.6
    下载: 导出CSV

    Table  6  Relative surface concentration of O of the catalysts

    CatalystMolar ratio/%
    Olatt/OOads/OOOH/O
    CMZZ-057.829.512.7
    CMZZ-0.2557.824.417.8
    CMZZ-0.556.722.620.7
    CMZZ-156.822.720.5
    CMZZ-1.559.222.518.3
    下载: 导出CSV

    Table  7  Center of reduction peaks with corresponding contributions derived from H2-TPR profiles of CMZZ-X catalysts

    CatalystLocation of reduction peaks/°C (proportion of each peak/%)
    αβ
    CMZZ-0365.5(69.3)400.0(30.7)
    CMZZ-0.25364.0(75.9)391.3(24.1)
    CMZZ-0.5359.7(85.8)391.3(14.2)
    CMZZ-1351.0(76.4)387.6(23.6)
    CMZZ-1.5353.3(86.8)390.3(13.2)
    下载: 导出CSV

    Table  8  Basic sites distribution of the CMZZ-X catalysts

    CatalystThe ratio of basic sites/%Number of total basic sites
    /(μmol·g−1)
    αβγ
    CMZZ-070.921.18.0240.7
    CMZZ-0.2553.617.528.9228.5
    CMZZ-0.525.712.362.0239.1
    CMZZ-122.957.219.9237.8
    CMZZ-1.520.562.217.3248.9
    下载: 导出CSV

    Table  9  Catalytic performance of the catalysts

    CatalystCO2 conv.
    /%
    CH3OH sele.
    /%
    STY
    /(mg·mL·h−1)
    TOF
    /(10−3s−1)
    CMZZ-01.954.511.50.6
    CMZZ-0.254.268.535.51.4
    CMZZ-0.56.573.763.62.2
    CMZZ-16.167.449.82.0
    CMZZ-1.55.162.941.11.7
    Reaction conditions: 250 °C, 5 MPa, H2/CO2=3∶1, 4000 mL/(mL·h).
    下载: 导出CSV
  • [1] ATSBHA T A, YOON T, SEONGHO P, et al. A review on the catalytic conversion of CO2 using H2 for synthesis of CO, methanol and hydrocarbons[J]. J CO2 Util,2021,44:101413. doi: 10.1016/j.jcou.2020.101413
    [2] SUN J, LIU F, SALAHUDDIN U, et al. Optimization and understanding of ZnO nanoarray supported Cu-ZnO-Al2O3 catalyst for enhanced CO2-methanol conversion at low temperature and pressure[J]. Chem Eng J,2023,455:140559. doi: 10.1016/j.cej.2022.140559
    [3] MARCOS F C F, ALVIM R S, LIN L, et al. The role of copper crystallization and segregation toward enhanced methanol synthesis via CO2 hydrogenation over CuZrO2 catalysts: A combined experimental and computational study[J]. Chem Eng J,2023,452:139519. doi: 10.1016/j.cej.2022.139519
    [4] GUO T, GUO Q, LI S, et al. Effect of surface basicity over the supported Cu-ZnO catalysts on hydrogenation of CO2 to methanol[J]. J Catal,2022,407:312−321. doi: 10.1016/j.jcat.2022.01.035
    [5] MALIK A S, ZAMAN S F, AL-ZAHRANI A A, et al. Selective hydrogenation of CO2 to CH3OH and in-depth DRIFT analysis for PdZn/ZrO2 and CaPdZn/ZrO2 catalysts[J]. Catal Today,2020,357:573−582. doi: 10.1016/j.cattod.2019.05.040
    [6] PARK K, HAKEEM D A, CHA J S. Synthesis and structural properties of thermoelectric Ca3_xAgxCo4O9+delta powders[J]. Dalton Trans,2016,45(16):6990−6997. doi: 10.1039/C5DT04959H
    [7] DUMA Z G, MOMA J, LANGMI H W, et al. Towards high CO2 conversions using Cu/Zn catalysts supported on aluminum fumarate metal-organic framework for methanol synthesis[J]. Catalysts,2022,12(10):1104. doi: 10.3390/catal12101104
    [8] HAN X, LI M, CHANG X, et al. Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol[J]. J Energy Chem,2022,71:277−287. doi: 10.1016/j.jechem.2022.03.034
    [9] SINGH R, PANDEY V, PANT K K. Promotional role of oxygen vacancy defects and Cu-Ce interfacial sites on the activity of Cu/CeO2 catalyst for CO2 hydrogenation to methanol[J]. ChemCatChem,2022,14(24):e202201053. doi: 10.1002/cctc.202201053
    [10] XU Y, GAO Z, PENG L, et al. A highly efficient Cu/ZnOx/ZrO2 catalyst for selective CO2 hydrogenation to methanol[J]. J Catal,2022,414:236−244. doi: 10.1016/j.jcat.2022.09.011
    [11] MURTHY P S, LIANG W, JIANG Y, et al. Cu-Based nanocatalysts for CO2 hydrogenation to methanol[J]. Energy Fuels,2021,35(10):8558−8584.
    [12] WANG Y, WANG G, VAN DER WAL L I, et al. Visualizing element migration over bifunctional metal-zeolite Catalysts and its impact on catalysis[J]. Angew Chem Int Ed,2021,60:17735−17743. doi: 10.1002/anie.202107264
    [13] LI J W, DOU L G, GAO Y, et al. Revealing the active sites of the structured Ni-based catalysts for one-step CO2/CH4 conversion into oxygenates by plasma-catalysis[J]. J CO2 Util,2021,52:101675. doi: 10.1016/j.jcou.2021.101675
    [14] NEZAM I, ZHOU W, GUSMAO G S, et al. Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis[J]. J CO2 Util,2021,45:101405. doi: 10.1016/j.jcou.2020.101405
    [15] HADDED A, MASSOUDI J, DHAHRI E, et al. Structural, optical and dielectric properties of Cu1.5Mn1.5O4 spinel nanoparticles[J]. RSC Adv,2020,10(69):42542−42556. doi: 10.1039/D0RA08405K
    [16] LI F, ZHANG R K, LI Q M, et al. Preparation of ultrafine Cu1.5Mn1.5O4 spinel nanoparticles and its application in p-nitrophenol reduction[J]. Res Chem Intermed,2017,43(11):6505−6519. doi: 10.1007/s11164-017-3001-9
    [17] WANG J J, TIAN P, LI K X, et al. The excellent performance of nest-like oxygen-deficient Cu1.5Mn1.5O4 applied in activated carbon air-cathode microbial fuel cell[J]. Bioresour Technol,2016,222:107−113. doi: 10.1016/j.biortech.2016.09.126
    [18] NAKAMURA J, NAKAMURA I, UCHIJIMA T, et al. A surface science investigation of methanol synthesis over a Zn-deposited polycrystalline Cu surface[J]. J Catal,1996,160(1):65−75. doi: 10.1006/jcat.1996.0124
    [19] FUJITANI T, NAKAMURA I, UCHIJIMA T, et al. The kinetics and mechanism of methanol synthesis by hydrogenation of CO2 over a Zn-deposited Cu(111) surface[J]. Surf Sci,1997,383(2):285−298.
    [20] HU J, LI Y Y, ZHEN Y P, et al. In situ FTIR and ex situ XPS/HS-LEIS study of supported Cu/Al2O3 and Cu/ZnO catalysts for CO2 hydrogenation[J]. Chin J Catal,2021,42(3):367−375. doi: 10.1016/S1872-2067(20)63672-5
    [21] WANG S W, YANG J H, WANG S Q, et al. Effect of Cu and Zn on the performance of Cu-Mn-Zn/ZrO2 catalysts for CO2 hydrogenation to methanol[J]. Fuel Process Technol,2023,247:107789. doi: 10.1016/j.fuproc.2023.107789
    [22] WITOON T, CHALORNGTHAM J, DUMRONGBUNDITKUL P, et al. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases[J]. Chem Eng J,2016,293:327−336. doi: 10.1016/j.cej.2016.02.069
    [23] L'HOSPITAL V, ANGELO L, ZIMMERMANN Y, et al. Influence of the Zn/Zr ratio in the support of a copper-based catalyst for the synthesis of methanol from CO2[J]. Catal Today,2021,369:95−104. doi: 10.1016/j.cattod.2020.05.018
    [24] ZHAN H J, LI F, XIN C L, et al. Performance of the La-Mn-Zn-Cu-O based perovskite precursors for methanol synthesis from CO2 hydrogenation[J]. Catal Lett,2015,145(5):1177−1185. doi: 10.1007/s10562-015-1513-8
    [25] DONG X S, LI F, ZHAO N, et al. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method[J]. Appl Catal B: Environ,2016,191:8−17. doi: 10.1016/j.apcatb.2016.03.014
    [26] ZHAN H J, LI F, GAO P, et al. Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M=Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors[J]. J Power Sources,2014,251:113−21. doi: 10.1016/j.jpowsour.2013.11.037
    [27] ARENA F, ITALIANO G, BARBERA K, et al. Basic evidences for methanol-synthesis catalyst design[J]. Catal Today,2009,143(1):80−85.
    [28] AN B, ZHANG J Z, CHENG K, et al. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2[J]. J Am Chem Soc,2017,139(10):3834−3840. doi: 10.1021/jacs.7b00058
    [29] DHAGE P, SAMOKHVALOV A, REPALA D, et al. Regenerable Fe-Mn-ZnO/SiO2 sorbents for room temperature removal of H2S from fuel reformates: performance, active sites, operando studies[J]. Phys Chem Chem Phys,2011,13(6):2179−2187. doi: 10.1039/C0CP01355B
    [30] ALABSI M H, CHEN X, WANG X, et al. Highly dispersed Pd nanoparticles supported on dendritic mesoporous CeZrZnOx for efficient CO2 hydrogenation to methanol[J]. J Catal,2022,413:751−761. doi: 10.1016/j.jcat.2022.07.029
    [31] XIE Y, CHEN J, WU X, et al. Frustrated Lewis pairs boosting low-temperature CO2 methanation performance over Ni/CeO2 nanocatalysts[J]. ACS Catal,2022,12(17):10587−10602. doi: 10.1021/acscatal.2c02535
    [32] WANG S Q, YANG J H, WANG S W, et al. Effect of preparation method on the performance of Cu-Mn-(La)-Zr catalysts for CO2 hydrogenation to methanol[J]. ChemCatChem,2022,14(23):e202200957. doi: 10.1002/cctc.202200957
    [33] LIU X, LUO J, WANG H, et al. In situ spectroscopic characterization and theoretical calculations identify partially reduced ZnO1−x/Cu interfaces for methanol synthesis from CO2[J]. Angew Chem Int Ed Eng,2022,61(23):e202202330. doi: 10.1002/anie.202202330
    [34] CHEN S Y, ZHANG J F, SONG F E, et al. Induced high selectivity methanol formation during CO2 hydrogenation over a CuBr2-modified CuZnZr catalyst[J]. J Catal,2020,389:47−59. doi: 10.1016/j.jcat.2020.05.023
    [35] CHEN K, YU J, LIU B, et al. Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst[J]. J Catal,2019,372:163−173. doi: 10.1016/j.jcat.2019.02.035
    [36] RODRIGUEZ J A, LIU P, STACCHIOLA D J, et al. Hydrogenation of CO2 to methanol: Importance of metal-oxide and metal-carbide interfaces in the activation of CO2[J]. ACS Catal,2015,5(11):6696−6706. doi: 10.1021/acscatal.5b01755
    [37] WANG W W, QU Z P, SONG L X, et al. An investigation of Zr/Ce ratio influencing the catalytic performance of CuO/Ce1−xZrx O2 catalyst for CO2 hydrogenation to CH3OH[J]. J Energy Chem,2020,47:18−28. doi: 10.1016/j.jechem.2019.11.021
    [38] ZHU C Z, WEI X Q, LI W Q, et al. Crystal-plane effects of CeO2{110} and CeO2{100} on photocatalytic CO2 reduction: Synergistic interactions of oxygen defects and hydroxyl groups[J]. ACS Sustainable Chem Eng,2020,8(38):14397−14406.
    [39] DOSTAGIR N H M, RATTANAWAN R, GAO M, et al. Co single atoms in ZrO2 with Inherent oxygen vacancies for selective hydrogenation of CO2 to CO[J]. ACS Catal,2021,11(15):9450−9461. doi: 10.1021/acscatal.1c02041
    [40] GAO P, ZHANG L N, LI S G, et al. Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels[J]. ACS Cent Sci,2020,6(10):1657−1670. doi: 10.1021/acscentsci.0c00976
    [41] GAO P, LI S G, BU X N, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat Chem,2017,9(10):1019−1024. doi: 10.1038/nchem.2794
    [42] GAO P, LI F, ZHAN H J, et al. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal,2013,298:51−60. doi: 10.1016/j.jcat.2012.10.030
  • 加载中
图(13) / 表(9)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  58
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-30
  • 修回日期:  2023-09-27
  • 录用日期:  2023-09-28
  • 网络出版日期:  2023-10-31
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回