留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤气化细渣高炭组分超声强化酸浸法制备多孔材料

李翠翠 韩瑞 周安宁 张宁宁 郭凯强 陈恒 陈肖役 李振 王俊哲

李翠翠, 韩瑞, 周安宁, 张宁宁, 郭凯强, 陈恒, 陈肖役, 李振, 王俊哲. 煤气化细渣高炭组分超声强化酸浸法制备多孔材料[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60402-5
引用本文: 李翠翠, 韩瑞, 周安宁, 张宁宁, 郭凯强, 陈恒, 陈肖役, 李振, 王俊哲. 煤气化细渣高炭组分超声强化酸浸法制备多孔材料[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60402-5
LI Cuicui, HAN Rui, ZHOU Anning, ZHANG Ningning, GUO Kaiqiang, CHEN Heng, CHEN Xiaoyi, LI Zhen, WANG Junzhe. Preparation of porous materials by ultrasound-intensified acid leaching of high-carbon component in coal gasification fine slag[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60402-5
Citation: LI Cuicui, HAN Rui, ZHOU Anning, ZHANG Ningning, GUO Kaiqiang, CHEN Heng, CHEN Xiaoyi, LI Zhen, WANG Junzhe. Preparation of porous materials by ultrasound-intensified acid leaching of high-carbon component in coal gasification fine slag[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60402-5

煤气化细渣高炭组分超声强化酸浸法制备多孔材料

doi: 10.1016/S1872-5813(23)60402-5
基金项目: 国家自然科学基金(52374279)和陕西省重点研发计划(2023-YBGY-055)资助
详细信息
    通讯作者:

    Tel:15929705889,E-mail:psu564@qq.com

  • 中图分类号: TQ536

Preparation of porous materials by ultrasound-intensified acid leaching of high-carbon component in coal gasification fine slag

Funds: The project was supported by National Natural Science Foundation of China (52374279) and Natural Science Foundation of Shaanxi Province (2023-YBGY-055).
  • 摘要: 煤气化细渣是煤炭清洁高效利用的副产物之一,其资源化应用迫在眉睫。通过简单筛分得到固定碳含量高于60%的高炭组分,并以此为原料,采用超声酸浸法制备多孔材料。以核废水中放射性碘的吸附处理为应用背景,用碘吸附值表征多孔材料的吸附性能。结合SEM、BET、XRD和FT-IR等性质和结构分析方法,系统研究了超声时间、超声功率、酸浓度和温度对多孔材料碘吸附性能和组成结构的影响规律;并探讨了超声强化酸浸对残炭的组成结构的影响机制和灰成分的迁移转化规律,总结出超声强化酸浸作用机理。结果表明,煤气化细渣高炭组分在酸浓度为4 mol/L、酸浸温度为50 ℃、超声功率为210 W,超声时间1.5 h的条件下,所制备多孔材料的碘吸附性能最佳,为468.53 mg/g,比表面积达到474.97 m2/g,且具有以介孔为主的丰富孔隙结构。各因素对多孔材料碘吸附性能影响的顺序为:超声时间>酸浓度>超声功率>酸浸温度。超声强化酸浸作用机理是超声空化和机械波作用一方面强化炭灰黏附颗粒的解离,使堵塞在气化细渣孔道内的灰颗粒脱附,增加孔隙结构的连通性;其次,会导致炭灰颗粒表面裂纹的产生,增强碳颗粒内部无机组分的可及性;第三,能够提高酸浸过程的传质速率,强化气化细渣中的无机组分的浸出效果。
  • 图  1  HFS的组成结构特征

    Figure  1  The compositional and structural characteristics of HFS

    (a): XRD patterns; (b): SEM image; (c): N2 adsorption-desorption isotherms; (d): FT-IR spectrogram.

    图  2  制备条件对多孔材料碘吸附值的影响

    Figure  2  Effect of preparation conditions on iodine adsorption value of porous materials

    (a): HCl concentration; (b): reaction temperature; (c): ultrasonic power; (d): ultrasonic time.

    图  3  不同酸浓度下样品的SEM图像

    Figure  3  SEM of porous materials prepared by different acid concentration conditions

    图  4  不同酸浓度下样品的粒度分布

    Figure  4  Particle size distribution of samples at different acid concentrations

    图  5  不同酸浸温度下样品的SEM图像

    Figure  5  SEM of samples at different leaching temperatures

    图  6  不同酸浸温度下样品的粒度分布

    Figure  6  Particle size distribution of samples at different leaching temperatures

    图  7  不同超声功率下样品的粒度分布

    Figure  7  Particle size distribution of samples at different ultrasonic powers

    图  8  不同超声功率下样品的SEM图像

    Figure  8  SEM of samples under different ultrasonic power

    图  9  不同超声时间下样品的SEM图像

    Figure  9  SEM of samples under different ultrasound times

    图  10  不同超声时间下样品的粒度组成

    Figure  10  Particle size distribution of samples at different ultrasonic times

    图  11  正交试验的各因素及水平的目标函数图(a)和雷达图(b)

    Figure  11  The objective function plot of various factors and levels (a) and Range (R) radar plot of orthogonal experiment (b)

    图  12  (a)、(b) HFS和(c)、(d) HFS-4-210-50-1.5的SEM图像

    Figure  12  SEM morphological characteristics of (a), (b) HFS and (c), (d) HFS-4-210-50-1.5

    图  13  HFS、HFS-4-0-50-1.5与HFS-4-210-50-1.5的N2吸附-解吸等温线

    Figure  13  N2 adsorption-desorption isotherms of HFS, HFS-4-0-50-1.5 and HFS-4-210-50-1.5

    图  14  HFS、HFS-4-0-50-1.5与HFS-4-210-50-1.5的红外光谱谱图

    Figure  14  Infrared spectra of HFS, HFS-4-0-50-1.5and HFS-4-210-50-1.5

    图  15  HFS、HFS-4-0-50-1.5与HFS-4-210-50-1.5的XRD谱图

    Figure  15  XRD patterns of HFS, HFS-4-0-50-1.5 and HFS-4-210-50-1.5

    图  16  超声过程中Fe的溶出规律

    Figure  16  Dissolution rule of Fe during ultrasonic process

    图  17  超声过程中孔隙发展示意图

    Figure  17  Schematic diagram of pore development in ultrasonic process

    表  1  煤气化细渣及各粒度级的的工业分析

    Table  1  Proximate analysis of each particle size of FS and its classified product

    SampleProximate analysis wad/%Yield/%
    MAVFC
    >500 μm0.9549.772.1247.162.88
    250−500 μm1.4222.572.3273.698.48
    125−250 μm1.6827.931.6168.7823.30
    74−125 μm0.8662.501.2835.3711.72
    37−74 μm0.4766.581.1931.768.57
    <37 μm0.5785.162.1812.0945.06
    FS1.9164.321.5732.20
    Note: ad denotes the air dryness benchmark.
    下载: 导出CSV

    表  2  煤气化细渣及各粒度级的孔隙特征参数

    Table  2  Pore structure parameters of FS and each particle size classified product

    SampleBET surface area
    A/(m2·g−1)
    Total pore volume
    vt/(cm3·g−1)
    Microporous pore volume
    vm/(cm3·g−1)
    Average pore size
    d/nm
    >500 μm59.430.0230.02136.74
    250−500 μm238.720.150.0503.97
    125−250 μm497.310.400.0504.12
    74−125 μm585.130.560.0124.35
    37−74 μm273.950.300.0034.67
    <37 μm98.390.130.0035.77
    FS271.720.230.0324.12
    下载: 导出CSV

    表  3  HFS的化学成分

    Table  3  Chemical composition of HFS

    SampleContent w/%
    SiO2Al2O3CaOFe3O4Na2OMgOK2OSO3MnOBaOSrOother elementsLOI
    HFS43.0419.5013.1610.323.262.012.084.420.160.280.331.4474.34
    下载: 导出CSV

    表  4  HFS的孔隙特征参数

    Table  4  Pore structure parameters of HFS

    SampleBET surface area
    A/(m2·g−1)
    Total pore volume
    vt/(cm3·g−1)
    Microporous pore volume
    vm/(cm3·g−1)
    Average pore size
    d/nm
    HFS395.980.3070.0534.16
    下载: 导出CSV

    表  5  不同酸浓度下样品的孔隙特征参数

    Table  5  Pore characteristics of samples at different acid concentrations

    SampleBET surface area
    A/(m2·g−1)
    Total pore volume
    vt/(cm3·g−1)
    Microporous pore volume
    vm/(cm3·g−1)
    Average pore size
    d/nm
    HFS-1-210-50-1.5416.640.3140.0724.30
    HFS-2-210-50-1.5422.780.3240.0714.29
    HFS-3-210-50-1.5435.190.3150.0754.12
    HFS-4-210-50-1.5474.970.3340.0803.97
    HFS-5-210-50-1.5431.390.3100.0724.10
    下载: 导出CSV

    表  6  不同酸浸温度下样品的孔隙特征参数

    Table  6  Pore characteristics of samples at different leaching temperatures

    SampleBET surface area
    A/(m2·g−1)
    Total pore volume
    vt /(cm3·g−1)
    Microporous pore volume
    vm/(cm3·g−1)
    Average pore size
    d/nm
    HFS-4-210-30-1.5421.330.3030.0684.06
    HFS-4-210-50-1.5474.970.3340.0803.97
    HFS-4-210-60-1.5444.370.3140.0713.94
    HFS-4-210-70-1.5431.660.3100.0674.04
    HFS-4-210-80-1.5453.300.3330.0664.13
    下载: 导出CSV

    表  7  不同超声功率下样品的孔隙特征参数

    Table  7  Pore characteristics of samples at different ultrasonic powers

    SampleBET surface area
    A/(m2·g−1)
    Total pore volume
    vt/(cm3·g−1)
    Microporous pore volume
    vm/(cm3·g−1)
    Average pore size
    d/nm
    HFS-4-150-50-1.5414.310.3060.0724.21
    HFS-4-180-50-1.5427.000.3080.0764.17
    HFS-4-210-50-1.5474.970.3340.0803.97
    HFS-4-240-50-1.5417.930.2980.0694.01
    HFS-4-270-50-1.5415.050.3100.0714.08
    下载: 导出CSV

    表  8  不同超声时间下样品的孔隙参数特征

    Table  8  Pore parameter characteristics of samples at different ultrasonic times

    SampleBET surface area
    A/(m2·g−1)
    Total pore volume
    vt/(cm3·g−1)
    Microporous pore volume
    vm/(cm3·g−1)
    Average pore size
    d/nm
    HFS-4-210-50-0.5405.990.2910.0724.10
    HFS-4-210-50-1440.550.3140.0744.06
    HFS-4-210-50-1.5474.970.3340.0803.97
    HFS-4-210-50-2437.950.3040.0773.93
    HFS-4-210-50-2.5427.720.3080.0714.15
    下载: 导出CSV

    表  9  超声酸浸试验中各因素的设计值

    Table  9  Design values of each factor in ultrasound-assisted acid leaching experiment

    FactorLevel 1Level 2Level 3
    Acid concentration/(mol·L−1)345
    Ultrasonic power/W180210240
    Ultrasonic time/h11.52
    Reaction temperature/℃305070
    下载: 导出CSV

    表  10  正交试验结果

    Table  10  The results of orthogonal experiment

    NumberABCDIodine adsorption value/(mg·g−1)
    11111410.21
    21232441.70
    31323437.95
    42133446.22
    52221468.85
    62312439.00
    73122448.07
    83213440.43
    93331444.10
    K1j1289.861304.501289.641323.161289.86
    K2j1354.071350.981354.871328.771354.07
    K3j1332.601321.051332.021324.601332.60
    K1j21663738.821701720.251663171.331750752.391663738.82
    K2j21833505.561825146.961835672.721765629.711833505.57
    K3j21775822.761745173.101774277.281754565.161775822.76
    下载: 导出CSV

    表  11  方差分析结果

    Table  11  Results of the variance analysis

    FactorSSjdfjVjFFaSignificance level
    A712.052356.02262.74539F0.1(2,4)=4.32significant
    B369.772184.89136.45018F0.05(2,4)=6.94significant
    C730.112365.05269.40959F0.01(2,4)=18significant
    D5.4222.71
    Inaccuracy5.4241.355
    Sum1822.77
    下载: 导出CSV

    表  12  超声后细渣的粒度特性

    Table  12  Particle size characteristics of fine slag after ultrasound

    SampleParticle size/μmYield/%Ash content/%Fixed carbon content/%
    250−500 μm250−50027.8119.8076.24
    125−250 μm125−25043.7626.1269.45
    74−125 μm74−12510.0121.7473.83
    37−74 μm37−747.4634.2261.91
    <37 μm<3710.9645.9550.42
    下载: 导出CSV

    表  13  HFS、HFS-4-0-50-1.5与HFS-4-210-50-1.5的孔隙特征参数

    Table  13  Pore structure parameters of HFS, HFS-4-0-50-1.5 and HFS-4-210-50-1.5

    SampleBET surface area
    A/(m2·g−1)
    Total pore volume
    vt/(cm3·g−1)
    Microporous pore volume
    vm/(cm3·g−1)
    Average pore size
    d/nm
    HFS395.980.3070.0534.16
    HFS-4-0-50-1.5441.050.3200.0744.19
    HFS-4-210-50-1.5474.970.3340.0803.97
    下载: 导出CSV

    表  14  HFS、HFS-4-0-50-1.5与HFS-4-210-50-1.5的氧化物含量

    Table  14  Oxide content of HFS, HFS-4-0-50-1.5 and HFS-4-210-50-1.5

    SampleContent w/% LOI
    SiO2Al2O3CaOFe3O4Na2OMgOK2OSO3MnOBaOSrOother elements
    HFS43.0419.5013.1610.323.262.012.084.420.160.280.331.4474.34
    HFS-4-0-50-1.579.008.611.182.180.640.391.000.660.010.140.066.1483.04
    HFS-4-210-50-1.585.777.091.172.090.610.351.001.010.020.050.8384.52
    下载: 导出CSV

    表  15  HFS-4-210-50-1.5中有害金属元素的溶出量

    Table  15  Dissolved amount of hazardous trace elements in HFS-4-210-50-1.5

    Dissolution conditionHazardous trace elements/(mg·kg−1)
    AsCdCoCrMnNiPbSbZn
    HM0.0970.0030.0070.2440.042
    AM0.0860.0190.0130.0130.0850.267
    下载: 导出CSV
  • [1] MENG J, LIAO W, ZHANG G. Emerging CO2-mineralization technologies for co-utilization of industrial solid waste and carbon resources in China[J]. Minerals,2021,11(3):274. doi: 10.3390/min11030274
    [2] 吕飞勇, 初茉, 易浩然, 等. 磁性灰粒在不同粒级气化灰渣中的分布特性[J]. 化工进展,2022,41(5):2372−2378. doi: 10.16085/j.issn.1000-6613.2021-1056

    LV Feiyong, CHU Mo, YI Haoran, et al. Distribution characteristics of magnetic ash particles in gasification slag of different particle sizes[J]. Chem Ind Eng Prog,2022,41(5):2372−2378. doi: 10.16085/j.issn.1000-6613.2021-1056
    [3] HAN R, ZHOU A N, ZHANG N N, et al. Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization: A review[J]. Int J Min Met Mater,2024,31:217−230. doi: 10.1007/s12613-023-2753-z
    [4] WU S, HUANG S, WU Y, et al. Characteristics and catalytic actions of inorganic constituents from entrained-flow coal gasification slag[J]. J Energy Inst,2015,88(1):93−103. doi: 10.1016/j.joei.2014.04.001
    [5] 高影, 赵伟, 周安宁, 等. 水煤浆气化细渣的组成结构特征及干法脱炭研究[J]. 燃料化学学报,2022,50(8):954−965. doi: 10.1016/S1872-5813(22)60007-0

    GAO Ying, ZHAO Wei, ZHOU Anning, etal. Study on the composition and structure characteristics and dry decarbonization separation of coal water slurry gasification fine slag[J]. J Fuel Chem Technol,2022,50(8):954−965. doi: 10.1016/S1872-5813(22)60007-0
    [6] WAGNER N J, MATJIE R H, SLAGHUIS J H, et al. Characterization of unburned carbon present in coarse gasification ash[J]. Fuel,2008,87(6):683−691. doi: 10.1016/j.fuel.2007.05.022
    [7] GU Y, QIAO X. A carbon silica composite prepared from water slurry coal gasification slag[J]. Microporous Mesoporous Mater,2019,276:303−307. doi: 10.1016/j.micromeso.2018.06.025
    [8] REN L, DING L, GUO Q, et al. Characterization, carbon-ash separation and resource utilization of coal gasification fine slag: A comprehensive review[J]. J Clean Prod, 2023: 136554.
    [9] LIU S, CHEN X, AI W, et al. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. J Clean Prod,2019,212:1062−1071. doi: 10.1016/j.jclepro.2018.12.060
    [10] DU M, HUANG J, LIU Z, et al. Reaction characteristics and evolution of constituents and structure of a gasification slag during acid treatment[J]. Fuel,2018,224:178−185. doi: 10.1016/j.fuel.2018.03.073
    [11] ZHU D, ZUO J, JIANG Y, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Sci Total Environ,2020,707:136102. doi: 10.1016/j.scitotenv.2019.136102
    [12] GONH X, JIANG W, HU S, et al. Comprehensive utilization of foundry dust: Coal powder and clay minerals separation by ultrasonic-assisted flotation[J]. J Hazard Mater,2021,402:124124. doi: 10.1016/j.jhazmat.2020.124124
    [13] WANG W, LIU D, TU Y, et al. Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation[J]. Fuel,2020,278:118195. doi: 10.1016/j.fuel.2020.118195
    [14] TURAN M D, SARI Z A, DEMIRASLAN A. Ultrasound-assisted leaching and kinetic study of blended copper slag[J]. Metall Mater Trans B,2019,50:1949−1956.
    [15] GUO Z, GUO P, SU G, et al. Study on ultrasonically-enhanced sulfuric acid leaching of nickel from nickel-containing residue[J]. Crystals,2021,11(7):810. doi: 10.3390/cryst11070810
    [16] KURISINGAL J F, YUN H, HONG C S. Porous organic materials for iodine adsorption[J]. J Hazard Mater, 2023: 131835.
    [17] 郭燕鑫. 共价有机框架材料的制备及其对碘吸附性能研究[D]. 西宁: 青海师范大学, 2023.

    GUO Yanxin. Preparation of covalent organic framework materials and study on their adsorption properties for iodine[D]. Xining: Qinghai Normal University, 2023.
    [18] 程富江. 废纸再生脱墨污泥制备活性炭及其性能研究[D]. 天津: 天津科技大学, 2018.

    CHENG Fujiang. Study on preparation and characterization of activated carbon from deinking sludge[D]. Tianjin: Tianjin University of Science and Technology, 2018.
    [19] ZHANG T, YUE X, GAO L, et al. Hierarchically porous bismuth oxide/layered double hydroxide composites: Preparation, characterization and iodine adsorption[J]. J Clean Prod,2017,144(FEB.15):220−227.
    [20] 吴倩, 刘元元, 傅皓. 煤质活性炭碘吸附值标准样品的研制[J]. 煤质技术,2022,37(4):43−49.

    WU Qian, LIU Yuanyuan, FU Hao. Research on preparation of standard reference material of coal-activated carbon for iodine adsorption[J]. Goal Qual Technol,2022,37(4):43−49.
    [21] YU W, WANG X, LIU L, et al. Experimental study on pore structure and mechanical dehydration of coal gasification fine slag[J]. Energy Source Part A,2022,44(2):3629−3640. doi: 10.1080/15567036.2022.2069177
    [22] MIAO Z, GUO F, ZHAO X, et al. Effects of acid treatment on physicochemical properties and gasification reactivity of fine slag from Texaco gasifier[J]. Chem Eng Res Des,2021,169:1−8. doi: 10.1016/j.cherd.2021.01.020
    [23] 尹艳山, 尹杰, 张巍, 等. 红外和拉曼光谱的煤灰矿物组成研究[J]. 光谱学与光谱分析,2018,38(3):789−793.

    YIN Yanshan, YIN Jie, ZHANG Wei, et al. Characterization of mineral matter in coal ashes with infrared and Raman spectroscopy[J]. Spectrosc Spect Anal,2018,38(3):789−793.
    [24] LI T, HE S, SHEN T, et al. Using one-step acid leaching for the recovering of coal gasification fine slag as functional adsorbents: preparation and performance[J]. Int J Env Res Pub He,2022,19(19):12851. doi: 10.3390/ijerph191912851
    [25] ZHENG X, LI S, LIU B, et al. A study on the mechanism and kinetics of ultrasound-enhanced sulfuric acid leaching for zinc extraction from zinc oxide dust[J]. Nat Mater,2022,15(17):5969.
    [26] ZHANG J, ZUO J, JIANG Y, et al. Kinetic analysis on the mesoporous formation of coal gasification slag by acid leaching and its thermal stability[J]. Solid State Sci,2020,100:106084. doi: 10.1016/j.solidstatesciences.2019.106084
    [27] 袁帅, 赵立欣, 孟海波, 等. 生物炭主要类型, 理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(5): 1402−1417.

    YUAN Shuai, ZHAO Lixin, MENG Haibo, et al. The main types of biochar and their properties and expectative researches[J] Plant Nutr Fert Sci, 2016, 22(5): 1402−1417.
    [28] CHOUNG S, UM W, KIM M, et al. Uptake mechanism for iodine species to black carbon[J]. Environ Sci Technol,2013,47(18):10349−10355.
    [29] 李肽脂, 吴锋, 李辉, 等. 复合激发煤气化渣基胶凝材料的制备[J]. 环境工程学报,2022,16(7):2356−2364. doi: 10.12030/j.cjee.202202138

    LI Taizhi, WU Feng, LI Hui, et al. Preparation and microscopic mechanism of composite activated coal gasification slag-based cementitious materials[J]. J Environ Eng,2022,16(7):2356−2364. doi: 10.12030/j.cjee.202202138
    [30] 屈慧升, 索永录, 刘浪, 等. 改性煤气化渣基矿用充填材料制备与性能[J]. 煤炭学报,2022,47(5):1958−1973. doi: 10.13225/j.cnki.jccs.2021.0405

    QU Huisheng, SU Yonglu, LIU Lang, et al. Preparation and properties of modified coal gasification slag-based filling materials for mines[J]. J China Coal Soc,2022,47(5):1958−1973. doi: 10.13225/j.cnki.jccs.2021.0405
    [31] 沙东, 王宝民, 潘宝峰, 等. 地质聚合物强化增韧方法研究综述[J]. 复合材料学报,2024,in press. doi: 10.13801/j.cnki.fhclxb.20230911.003

    SHA Dong, WANG Baomin, PAN Baofeng, et al. A review on reinforcing and toughening methods of geopolymers[J]. Acta Mater Compost Sin,2024,in press. doi: 10.13801/j.cnki.fhclxb.20230911.003
    [32] 崔维, 易武平, 蔡安. 超声波强化浸出铝灰中氯的机理[J]. 过程工程学报,2017,17(4):757−762. doi: 10.12034/j.issn.1009-606X.216367

    CUI Wei, YI Wuping, CAI An. Mechanism of ultrasound-assisted leaching chlorine from aluminum dross[J]. Chin J Process Eng,2017,17(4):757−762. doi: 10.12034/j.issn.1009-606X.216367
    [33] MASOUM H G, RASTEGAR S O, KHAMFOROUSH M. Ultrasound-assisted leaching of vanadium and yttrium from coal ash: Optimization, kinetic and thermodynamic study[J]. Chem Eng Technol,2021,44(12):2249−2256. doi: 10.1002/ceat.202100297
    [34] JIANG J, SUN S, WANG D, et al. Surface texture formation mechanism based on the ultrasonic vibration-assisted grinding process[J]. Int J Mach Tool Manu,2020,156:103595. doi: 10.1016/j.ijmachtools.2020.103595
  • 加载中
图(17) / 表(15)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  48
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-18
  • 修回日期:  2023-10-24
  • 录用日期:  2023-11-05
  • 网络出版日期:  2023-12-13

目录

    /

    返回文章
    返回