留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2催化制备高附加值多碳含氧化合物的研究进展

李永恒 吴冲冲 王文波 辛靖 米晓彤 杨国明 苏梦军 张斯然 李洪宝

李永恒, 吴冲冲, 王文波, 辛靖, 米晓彤, 杨国明, 苏梦军, 张斯然, 李洪宝. CO2催化制备高附加值多碳含氧化合物的研究进展[J]. 燃料化学学报(中英文), 2024, 52(4): 496-511. doi: 10.1016/S1872-5813(23)60404-9
引用本文: 李永恒, 吴冲冲, 王文波, 辛靖, 米晓彤, 杨国明, 苏梦军, 张斯然, 李洪宝. CO2催化制备高附加值多碳含氧化合物的研究进展[J]. 燃料化学学报(中英文), 2024, 52(4): 496-511. doi: 10.1016/S1872-5813(23)60404-9
LI Yongheng, WU Chongchong, WANG Wenbo, XIN Jing, MI Xiaotong, YANG Guoming, SU Mengjun, ZHANG Siran, LI Hongbao. Research progress on CO2 catalytic conversion to value-added oxygenates[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 496-511. doi: 10.1016/S1872-5813(23)60404-9
Citation: LI Yongheng, WU Chongchong, WANG Wenbo, XIN Jing, MI Xiaotong, YANG Guoming, SU Mengjun, ZHANG Siran, LI Hongbao. Research progress on CO2 catalytic conversion to value-added oxygenates[J]. Journal of Fuel Chemistry and Technology, 2024, 52(4): 496-511. doi: 10.1016/S1872-5813(23)60404-9

CO2催化制备高附加值多碳含氧化合物的研究进展

doi: 10.1016/S1872-5813(23)60404-9
基金项目: 中国海洋石油集团有限公司科技项目(KJGG-2022-12-CCUS-030401,030402)资助
详细信息
    通讯作者:

    Tel: +086-010-89913170, E-mail: liyh90@cnooc.com.cn

  • 中图分类号: O643.36

Research progress on CO2 catalytic conversion to value-added oxygenates

Funds: The project was supported by CNOOC Science and Technology Projects (KJGG-2022-12-CCUS-030401,030402)
  • 摘要: 将温室气体CO2通过化学反应路径制备高附加值多碳含氧化合物如乙醇、乙酸、丙醛、丙酸、丁醇等具有挑战性。由于C−C偶联反应的复杂性和成键的不可控性,导致合成多碳高值含氧化合物困难。本工作总结了近期在连续流固定床条件下CO2催化合成高附加值多碳含氧化合物的研究进展。首先归纳了CO2加氢路径下可能的反应机理;其次总结了CO2直接加氢(一步法、串联法)、CO2与轻烃重整、CO2氢甲酰化等不同反应路径下具有潜力的催化剂,包括金属碳化物、碱金属修饰的Cu、Fe、Co、Rh等单金属或二元金属制备多碳高值含氧化合物的特点,并进一步阐述了不同催化剂上的作用机制。最后对目前存在的问题和未来可能的解决方案进行了讨论和展望。
  • FIG. 3074.  FIG. 3074.

    FIG. 3074.  FIG. 3074.

    图  1  温度对CO2加氢制备化学品的平衡转化率的影响[2]

    Figure  1  Influence of temperature on equilibrium of CO2 hydrogenation to chemicals[2] (with permission from Science China Press)

    图  2  二氧化碳催化转化制含氧化合物的不同反应路径和产品

    Figure  2  The different reaction paths and products of CO2 catalytic conversion to oxygenates

    图  3  CO插入机理[21]

    Figure  3  Mechanism of CO insertion[21] (with permission from Elsevier)

    图  4  CO2加氢反应网络总结[22]

    Figure  4  Reaction networks of CO2 hydrogenation[22] (with permission from Wiley)

    图  5  CO2加氢反应的热力学分析[26]

    Figure  5  Thermodynamic analyses of CO2 hydrogenation[26] (with permission from Elsevier)

    图  6  0.1K-CMZF和4.6K-CMZF催化剂的原位红外谱图和不同中间产物峰强度[32]

    Figure  6  In-situ DRIFTS spectra and dynamic IR peak intensities of gaseous of CO2 hydrogenation over 0.1K-CMZF ((a), (b)) and 4.6K-CMZF ((c), (d)) catalyst[32] (with permission from American Chemical Society)

    图  7  InFe/K-Al2O3催化剂上的CO2加氢制多碳醇反应机理示意图[35]

    Figure  7  Reaction mechanism of higher alcohols formation from CO2 hydrogenation over InFe/K-Al2O3 catalyst[35] (with permission from American Chemical Society)

    图  8  不同载体上Co2O在CO2加氢催化反应中的稳定性[34]

    Figure  8  Stability mechanism of supported Co2C in CO2 hydrogenation to ethanol[34] (with permission from Elsevier)

    图  9  K修饰Ni-Zn双金属碳化物的CO2加氢催化性能和K-Ni1Zn3-450催化剂不同处理时间下的XRD谱图[22]

    Figure  9  Catalytic performance of K modified Ni-Zn carbide for CO2 hydrogenation and the XRD patterns of K-Ni1Zn3-450 at different time on stream[22] (with permission from Wiley)

    图  10  Na-Rh@S-1催化剂二氧化碳加氢转化的反应机理[8]

    Figure  10  Proposed reaction mechanism for CO2 hydrogenation over Na-Rh@S-1 catalysts[8] (with permission from American Chemical Society)

    图  11  Pd2Ce@Si16催化剂的纳米反应器富水模型和对CO2加氢制乙醇的催化反应机制[49]

    Figure  11  Proposed reaction mechanism and model of in-situ generated water enriched in nano reactor over Pd2Ce@Si16 catalyst for CO2 hydrogenation[49] (with permission from American Chemical Society)

    图  12  Cs修饰的Cu-Fe-Zn多功能催化剂用于CO2加氢制备多碳醇的催化反应路径[9]

    Figure  12  Illustration for the reaction pathways of CO2 hydrogenation over the Cs promoted Cu-Fe-Zn catalysts[9] (with permission from American Chemical Society)

    图  13  CZA/K-CMZF双功能催化剂不同装填方式对CO2加氢转化性能的影响及反应中的协同效应[6]

    Figure  13  Effect of packed manners on the catalytic performance and the proximity effect for CO2 hydrogenation over multifunctional CZA/K-CMZF catalyst[6] (with permission from American Chemical Society)

    图  14  催化剂不同装填方式对CO2加氢转化性能的影响及Na-Fe@C/K-CuZnA催化剂上的反应网络l[61]

    Figure  14  Effect of intimacy modes on the catalytic performance for CO2 hydrogenation over different catalysts and the reaction network via the Na-Fe@C/K-CuZnAl multifunctional catalyst[61] (with permission from American Chemical Society)

    图  15  CO2转化为乙酸和丙酸的合理反应机制[24]

    Figure  15  Plausible reaction mechanism for the conversion of CO2 to acetic and propionic acids[24] (with permission from American Chemical Society)

    图  16  CO2还原合成氢甲酰化原料CO和H2的反应路径[67]

    Figure  16  Proposed mechanism for hydrosilane reduction of CO2 to CO and H2[67] (with permission from American Chemical Society)

    图  17  CO2与烷烃涉及反应的热力学分析以及不同反应器内的产物平衡[16]

    Figure  17  Diagram of standard Gibbs free energy change (ΔG0) of reactions for CO2 and ethane and the equilibrium species distribution within two reactors[16] (with permission from Springer Nature)

    表  1  金属碳化物催化剂催化CO2加氢制多碳醇性能比较

    Table  1  Catalytic performance comparison for CO2 Hydrogenation to C2+ alcohols over typical metal carbide catalysts

    CatalystReaction
    temp./
    Reaction
    pressure/
    MPa
    H2/
    CO2
    WHSV/
    (mL·g−1·h−1)
    CO2
    conversion/
    %
    Selectivity/C%aC2+OH/
    ROH/
    %
    C2+OH
    STY/
    (mg·g−1·h−1)
    Stability/
    h
    Ref.
    COCH4+
    C2+Hx
    CH3OHC2+OHother
    oxy.
    10Mn1K-FeCb30033600040.533.455.90.210.5092.9100[31]
    4.6K-CuMgZnFe32053600030.430.652.41.315.9089.869.6100[32]
    Na-ZnFe@Cb32053900038.47.668.11.722.6 ~ 090.5158.1528[33]
    Na–Co/SiO225053400018.8229.0561.410.858.69087.5300[34]
    Na–Co/Si3N425053400017.7539.1651.650.758.44088.5300[34]
    4K-Ni1Zn3−300b35033480029.747.942.50.56.71.39062.780[22]
    a: C% represents the carbon atoms concentration of given product to the total carbon-containing products, b: C2+OH/ROH fraction (%) was calculated according to the carbon atoms concentration of MeOH to C2+OH.
    下载: 导出CSV

    表  2  金属活性位催化剂催化二氧化碳加氢制乙醇性能比较

    Table  2  Catalytic performance comparison for CO2 hydrogenation to C2+ alcohols over different metallic catalysts

    Active
    metal
    CatalystReaction
    temp./
    Reaction
    pressure/
    MPa
    H2/
    CO2
    WHSV/
    (mL·g−1·h−1)
    CO2
    conversion/
    %
    Selectivity/C%ROH/
    C2+OH/
    C%
    C2+OH
    STY/
    (mg·g−1·h−1)
    Ref.
    COCH4+
    C2+Hx
    CH3OHC2+OHother
    oxy.
    RhNa-Rh@S-12505360001032 ~ 24.8 ~ 25.2 ~ 180 ~ 41.772 b[8]
    Rh-VOx/MCM-41250336000a12.120.148.37.524.1076.347.9[45]
    RhFeLi/TiO2250536000a15.712.553.92.231.30.193.4145.3[46]
    Rh-Li/SiO2240536000715.763.55.215.5074.933.1[47]
    Rh-Fe/SiO226053600026.719.734.729.416035.2130.3[48]
    PdPd2Ce@Si162403330005.9 ~ 0 ~ 0 ~ 198.70 ~ 99252c[49]
    Pd/Fe3O42503380001.4 ~ 0 ~ 0298098440c[50]
    In2.5K5Co-In2O338043225036816.51.511.2088.1170[51]
    CoIr/Co(A)-Na2O/SiO22202.132000a7.638.545.37.87.9050.3[52]
    Co/La4Ga2O92803.5330009.610.852.213.723.3062.934.5[53]
    Ga(0.4)CuCo22033600017.82.345.427.524.8047.41.4 d[54]
    FeFeNaS-0.63203380003220.766.50.1612.6098.878.5[55]
    CuCu@Na-Beta3001.33120007.930.5 ~ 0 ~ 069.50 ~ 100258[23]
    CuFeKFeCu/α-ZrO23204330003030491.419.6093.359.1[56]
    a: GHSV of given catalyst, b: C2+OH STY per unit mass of active metal (mmol·g−1·h−1), c: C2+OH STY per unit mass of active metal (mmol·g−1·h−1), d: C2+OH STY per unit mass of catalyst (mmol·g−1·h−1).
    下载: 导出CSV

    表  3  串联催化剂催化CO2加氢制多碳醇性能比较

    Table  3  Catalytic performance comparison for CO2 hydrogenation to C2+ alcohols over different tandem catalysts

    CatalystReaction
    temp./
    Reaction
    pressure/
    MPa
    H2/
    CO2
    WHSV/
    (mL·g−1·h−1)
    CO2
    conversion/
    %
    Selectivity/C%C2+OH/
    ROH/
    %
    C2+OH
    STY/
    (mmol·g−1·h−1)
    Ref.
    COCH4+
    C2+Hx
    CH3OHC2+OHother
    oxy.
    Cs-Cu0.8Fe1Zn133053450036.6 ~ 20.3580.919.8093.81.47[9]
    NaFe@KCuZnAla32053450039.29.449.44.2370 ~ 86.56.6[61]
    MnCuK-Fe5C2/CuZnAlZra30033600042.122.760.61.215.5089.73.8[62]
    Co2C||CuZnAl250531200020.7 ~ 21 ~ 57 ~ 3.6 ~ 18.40 ~ 84.51.6[63]
    a: C2+OH/ROH fraction(%) was calculated according to the carbon atoms concentration of MeOH to C2+OH.
    下载: 导出CSV
  • [1] KAMKENG A D, WANG M, HU J, et al. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects[J]. Chem Eng Sci,2021,409:128138. doi: 10.1016/j.cej.2020.128138
    [2] 成康, 张庆红, 康金灿, 等. 二氧化碳直接制备高值化学品中的接力催化方法[J]. 中国科学: 化学,2020,50(7):743−755.

    CHENG Kang, ZHANG Qinghong, KANG Jincan, et al. Relay catalysis in the direct conversion of carbon dioxide to high-value chemicals[J]. Sci Chin Chem,2020,50(7):743−755.
    [3] 崔国庆, 胡溢玚, 娄颖洁, 等. CO2加氢制醇类催化剂的设计制备及性能研究进展[J]. 化学学报,2023,81(8):1081−1100. doi: 10.6023/A23040126

    CUI Guoqing, HU Yiyang, LOU Yingjie, et al. Research progress on the design, preparation, and properties of catalysts for CO2 hydrogenation to alcohols[J]. Acta Chim Sin,2023,81(8):1081−1100. doi: 10.6023/A23040126
    [4] 张涛, 刘志成, 杨为民. 低碳烷烃与二氧化碳催化转化研究进展[J]. 中国科学: 化学,2021,51(2):154−164.

    ZHANG Tao, LIU Zhicheng, YANG Weimin, et al. Progress in the catalytic conversion of light alkanes with carbon dioxide[J]. Sci Chin Chem,2021,51(2):154−164.
    [5] 郭淑佳, 王晗, 秦张峰, 等. 水煤气变换反应作用下的CO和CO2混合物加氢转化制烃和醇——热力学平衡研究(英文)[J]. 燃料化学学报(中英文),2023,51(4):482−491. doi: 10.1016/S1872-5813(23)60346-9

    GUO Shujia, WANG Han, QIN Zhangfeng, et al. Conversion of the CO and CO2 mixture to alcohols and hydrocarbons by hydrogenation under the influence of the water-gas shift reaction, a thermodynamic consideration[J]. J Fuel Chem Technol,2023,51(4):482−491. doi: 10.1016/S1872-5813(23)60346-9
    [6] XU D, YANG H, HONG X, et al. Tandem catalysis of direct CO2 hydrogenation to higher alcohols[J]. ACS Catal,2021,11(15):8978−8984. doi: 10.1021/acscatal.1c01610
    [7] WEI J, YAO R, HAN Y, et al. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons[J]. Chem Soc Rev,2021,50(19):10764−10805. doi: 10.1039/D1CS00260K
    [8] ZHANG F, ZHOU W, XIONG X, et al. Selective hydrogenation of CO2 to ethanol over sodium-modified rhodium nanoparticles embedded in zeolite silicalite-1[J]. J Phys Chem C,2021,125(44):24429−24439. doi: 10.1021/acs.jpcc.1c07862
    [9] XU D, DING M, HONG X, et al. Selective C2+ alcohol synthesis from direct CO2 hydrogenation over a Cs-promoted Cu-Fe-Zn catalyst[J]. ACS Catal,2020,10(9):5250−5260. doi: 10.1021/acscatal.0c01184
    [10] MA Z, POROSOFF M D. Development of tandem catalysts for CO2 hydrogenation to olefins[J]. ACS Catal,2019,9(3):2639−2656. doi: 10.1021/acscatal.8b05060
    [11] MARTÍN N, CIRUJANO F G. Multifunctional heterogeneous catalysts for the tandem CO2 hydrogenation-Fischer Tropsch synthesis of gasoline[J]. J CO2 Util,2022,65:102176. doi: 10.1016/j.jcou.2022.102176
    [12] XIE C, CHEN C, YU Y, et al. Tandem catalysis for CO2 hydrogenation to C2–C4 hydrocarbons[J]. Nano Lett,2017,17(6):3798−3802. doi: 10.1021/acs.nanolett.7b01139
    [13] NEZAM I, ZHOU W, GUSMãO G S, et al. Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis[J]. J CO2 Util,2021,45:101405. doi: 10.1016/j.jcou.2020.101405
    [14] 王晓星, 段永鸿, 张俊峰, 等. 串联催化剂上CO2催化转化制备高附加值烃类研究进展[J]. 燃料化学学报,2022,50(5):538−563. doi: 10.1016/S1872-5813(21)60181-0

    WANG Xiaoxing, DUAN Yongming, ZHANG Junfeng, et al. Catalytic conversion of CO2 into high value-added hydrocarbons over tandem catalyst[J]. J Fuel Chem Technol,2022,50(5):538−563. doi: 10.1016/S1872-5813(21)60181-0
    [15] ZHANG F, CHEN K, JIANG Q. Selective transformation of methanol to ethanol in the presence of syngas over composite catalysts[J]. ACS Catal,2022,12(14):8451−8461. doi: 10.1021/acscatal.2c01725
    [16] XIE Z, XU Y, XIE M, et al. Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates[J]. Nat Commun,2020,11(1):1887. doi: 10.1038/s41467-020-15849-x
    [17] XIE Z, GUO H, HUANG E, et al. Catalytic tandem CO2–ethane reactions and hydroformylation for C3 oxygenate production[J]. ACS Catal,2022,12(14):8279−8290. doi: 10.1021/acscatal.2c01700
    [18] LUK H T, MONDELLI C, MITCHELL S, et al. Role of carbonaceous supports and potassium promoter on higher alcohols synthesis over copper-iron catalysts[J]. ACS Catal,2018,8(10):9604−9618. doi: 10.1021/acscatal.8b02714
    [19] KHAN W U, BAHARUDIN L, CHOI J, et al. Recent progress in CO hydrogenation over bimetallic catalysts for higher alcohol synthesis[J]. ChemCatChem,2021,13(1):111−120. doi: 10.1002/cctc.202001436
    [20] AO M, PHAM G H, SUNARSO J, et al. Active centers of catalysts for higher alcohol synthesis from syngas: A review[J]. ACS Catal,2018,8(8):7025−7050. doi: 10.1021/acscatal.8b01391
    [21] XU X, DOESBURG E, SCHOLTEN J. Synthesis of higher alcohols from syngas-recently patented catalysts and tentative ideas on the mechanism[J]. Catal Today,1987,2(1):125−170. doi: 10.1016/0920-5861(87)80002-0
    [22] WANG J, WANG T, XI Y, et al. In-situ-formed potassium-modified nickel-zinc carbide boosts production of higher alcohols beyond CH4 in CO2 hydrogenation[J]. Angew Chem Int Ed,2023,e202311335.
    [23] DING L, SHI T, GU J, et al. CO2 hydrogenation to ethanol over Cu@ Na-Beta[J]. Chem,2020,6(10):2673−2689. doi: 10.1016/j.chempr.2020.07.001
    [24] SIBI M G, VERMA D, SETIYADI H C, et al. Synthesis of monocarboxylic acids via direct CO2 conversion over Ni-Zn intermetallic catalysts[J]. ACS Catal,2021,11(13):8382−8398. doi: 10.1021/acscatal.1c00747
    [25] LI J, WANG L, CAO Y, et al. Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels[J]. Chin J Chem Eng,2018,26(11):2266−2279. doi: 10.1016/j.cjche.2018.07.008
    [26] XU D, WANG Y, DING M, et al. Advances in higher alcohol synthesis from CO2 hydrogenation[J]. Chem,2021,7(4):849−881. doi: 10.1016/j.chempr.2020.10.019
    [27] LI S, YANG J, SONG C, et al. Iron carbides: Control synthesis and catalytic applications in COx hydrogenation and electrochemical HER[J]. Adv Mater,2019,31(50):1901796. doi: 10.1002/adma.201901796
    [28] FAN T, LIU H, SHAO S, et al. Cobalt catalysts enable selective hydrogenation of CO2 toward diverse products: recent progress and perspective[J]. J Phys Chem Lett,2021,12(43):10486−10496. doi: 10.1021/acs.jpclett.1c03043
    [29] GALHARDO T S, BRAGA A H, ARPINI B H, et al. Optimizing active sites for high CO selectivity during CO2 hydrogenation over supported nickel catalysts[J]. J Am Chem Soc,2021,143(11):4268−4280. doi: 10.1021/jacs.0c12689
    [30] BADDOUR F G, ROBERTS E J, TO A T, et al. An exceptionally mild and scalable solution-phase synthesis of molybdenum carbide nanoparticles for thermocatalytic CO2 hydrogenation[J]. J Am Chem Soc,2020,142(2):1010−1019. doi: 10.1021/jacs.9b11238
    [31] HUANG J, ZHANG G, ZHU J, et al. Boosting the production of higher alcohols from CO2 and H2 over Mn-and K-modified iron carbide[J]. Ind Eng Chem Res,2022,61(21):7266−7274. doi: 10.1021/acs.iecr.2c00720
    [32] XU D, DING M, HONG X, et al. Mechanistic aspects of the role of K promotion on Cu-Fe-based catalysts for higher alcohol synthesis from CO2 hydrogenation[J]. ACS Catal,2020,10(24):14516−14526. doi: 10.1021/acscatal.0c03575
    [33] WANG Y, WANG W, HE R, et al. Carbon-based electron buffer layer on ZnOx-Fe5C2-Fe3O4 boosts ethanol synthesis from CO2 hydrogenation[J]. Angew Chem Int Ed,2023,e202311786.
    [34] ZHANG S, LIU X, SHAO Z, et al. Direct CO2 hydrogenation to ethanol over supported Co2C catalysts: Studies on support effects and mechanism[J]. J Catal,2020,382:86−96. doi: 10.1016/j.jcat.2019.11.038
    [35] GOUD D, CHURIPARD S R, BAGCHI D, et al. Strain-enhanced phase transformation of iron oxide for higher alcohol production from CO2[J]. ACS Catal,2022,12(18):11118−11128. doi: 10.1021/acscatal.2c03183
    [36] ZHANG S, WU Z, LIU X, et al. Tuning the interaction between Na and Co2C to promote selective CO2 hydrogenation to ethanol[J]. Appl Catal B: Environ,2021,293:120207. doi: 10.1016/j.apcatb.2021.120207
    [37] KUSAMA H, OKABE K, SAYAMA K, et al. Alcohol synthesis by catalytic hydrogenation of CO2 over Rh-Co/SiO2[J]. Appl Organomet Chem,2000,14(12):836−840. doi: 10.1002/1099-0739(200012)14:12<836::AID-AOC97>3.0.CO;2-C
    [38] BAI S, SHAO Q, WANG P, et al. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd-Cu nanoparticles[J]. J Am Chem Soc,2017,139(20):6827−6830. doi: 10.1021/jacs.7b03101
    [39] HE Z, QIAN Q, MA J, et al. Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions[J]. Angew Chem Int Ed,2016,55(2):737−741. doi: 10.1002/anie.201507585
    [40] TATSUMI T, MURAMATS A, TOMINAGA H-O. Alcohol synthesis from CO2/H2 on silica-supported molybdenum catalysts[J]. Chem Lett,1985,14(5):593−594. doi: 10.1246/cl.1985.593
    [41] PAN X, FAN Z, CHEN W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nat Mater,2007,6(7):507−511. doi: 10.1038/nmat1916
    [42] 郑晋楠, 安康, 王嘉明, 等. Co/La-Ga-O复合氧化物用于催化二氧化碳加氢制乙醇[J]. 燃料化学学报.,2019,47(6):697−708. doi: 10.1016/S1872-5813(19)30031-3

    ZHENG Jinnan, AN Kang, WANG Jiaming, et al. Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst[J]. J Fuel Chem Technol,2019,47(6):697−708. doi: 10.1016/S1872-5813(19)30031-3
    [43] LI S G, GUO H J, ZHANG H R, et al. The reverse water-gas shift reaction and the synthesis of mixed alcohols over K/Cu-Zn catalyst from CO2 hydrogenation[J]. Adv Mater Res,2013,772:275−280. doi: 10.4028/www.scientific.net/AMR.772.275
    [44] YANG H, GENG X, YANG Y, et al. Mechanisms of CO2 hydrogenative conversion on supported Ni/ZrO2 catalyst[J]. Appl Surf Sci,2022,600:154151. doi: 10.1016/j.apsusc.2022.154151
    [45] WANG G, LUO R, YANG C, et al. Active sites in CO2 hydrogenation over confined VOx-Rh catalysts[J]. Sci Chin Chem,2019,62:1710−1719. doi: 10.1007/s11426-019-9590-6
    [46] YANG C, MU R, WANG G, et al. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation[J]. Chem Sci,2019,10(11):3161−3167. doi: 10.1039/C8SC05608K
    [47] KUSAMA H, OKABE K, SAYAMA K, et al. CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts[J]. Catal Today,1996,28(3):261−266. doi: 10.1016/0920-5861(95)00246-4
    [48] KUSAMA H, OKABE K, SAYAMA K, et al. Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-FeSiO2 catalysts[J]. Energy,1997,22(2-3):343−348. doi: 10.1016/S0360-5442(96)00095-3
    [49] CHEN J, ZHA Y, LIU B, et al. Rationally designed water enriched nano reactor for stable CO2 hydrogenation with near 100% ethanol selectivity over diatomic palladium active sites[J]. ACS Catal,2023,13:7110−7121. doi: 10.1021/acscatal.3c00586
    [50] CAPARRÓS F J, SOLER L, ROSSELL M D, et al. Remarkable carbon dioxide hydrogenation to ethanol on a palladium/iron oxide single-atom catalyst[J]. ChemCatChem,2018,10(11):2365−2369. doi: 10.1002/cctc.201800362
    [51] WITOON T, NUMPILAI T, NIJPANICH S, et al. Enhanced CO2 hydrogenation to higher alcohols over K-Co promoted In2O3 catalysts[J]. Chem Eng Sci,2022,431:133211. doi: 10.1016/j.cej.2021.133211
    [52] OKABE K, YAMADA H, HANAOKA T, et al. CO2 hydrogenation to alcohols over highly dispersed Co/SiO2 catalysts derived from acetate[J]. Chem Lett,2001,30(9):904−905. doi: 10.1246/cl.2001.904
    [53] AN K, ZHANG S, WANG J, et al. A highly selective catalyst of Co/La4Ga2O9 for CO2 hydrogenation to ethanol[J]. J Energy Chem,2021,56:486−495. doi: 10.1016/j.jechem.2020.08.045
    [54] ZHANG G, FAN G, ZHENG L, et al. Ga-promoted CuCo-based catalysts for efficient CO2 hydrogenation to ethanol: The key synergistic role of Cu-CoGaOx interfacial sites[J]. ACS Appl Mater Interfaces,2022,14(31):35569−35580. doi: 10.1021/acsami.2c07252
    [55] YAO R, WEI J, GE Q, et al. Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO2 hydrogenation[J]. Appl Catal B: Environ,2021,298:120556. doi: 10.1016/j.apcatb.2021.120556
    [56] LIU T, XU D, SONG M, et al. K–ZrO2 interfaces boost CO2 hydrogenation to higher alcohols[J]. ACS Catal,2023,13(7):4667−4674. doi: 10.1021/acscatal.3c00074
    [57] ZHENG K, LI Y, LIU B, et al. Ti-doped CeO2 stabilized single-atom rhodium catalyst for selective and stable CO2 hydrogenation to ethanol[J]. Angew Chem Int Ed,2022,61(44):e202210991. doi: 10.1002/anie.202210991
    [58] HAN S, FAN D, CHEN N, et al. Efficient conversion of syngas into ethanol by tandem catalysis[J]. ACS Catal,2023,13(16):10651−10660. doi: 10.1021/acscatal.3c01577
    [59] KHATAMIRAD M, KONRAD M, GENTZEN M, et al. Silica-supported catalyst system Rh-Mn-Ir-Li-Ti in syngas to ethanol reaction: Reactivity trends and performance optimization[J]. ChemCatChem,2023,15(1):e202201104. doi: 10.1002/cctc.202201104
    [60] XIE J, OLSBYE U. The oxygenate-mediated conversion of COx to hydrocarbons-on the role of zeolites in tandem catalysis[J]. Chem Rev,2023,123(20):11775−11816. doi: 10.1021/acs.chemrev.3c00058
    [61] WANG Y, WANG K, ZHANG B, et al. Direct conversion of CO2 to ethanol boosted by intimacy-sensitive multifunctional catalysts[J]. ACS Catal,2021,11(18):11742−11753. doi: 10.1021/acscatal.1c01504
    [62] HUANG J, ZHANG G, WANG M, et al. The synthesis of higher alcohols from CO2 hydrogenation over Mn-Cu-K modified Fe5C2 and CuZnAlZr tandem catalysts[J]. Front Energy Res,2023,10:995800. doi: 10.3389/fenrg.2022.995800
    [63] ZHANG S, HUANG C, SHAO Z, et al. Revealing and regulating the complex reaction mechanism of CO2 hydrogenation to higher alcohols on multifunctional tandem catalysts[J]. ACS Catal,2023,13(5):3055−3065. doi: 10.1021/acscatal.2c06245
    [64] JIANG X, NIE X, GUO X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chem Rev,2020,120(15):7984−8034. doi: 10.1021/acs.chemrev.9b00723
    [65] TAN G, WU Y, SHI Y, et al. Syngas-free highly regioselective rhodium-catalyzed transfer hydroformylation of alkynes to α, β-unsaturated aldehydes[J]. Angew Chem Int Ed,2019,131(22):7518−7522. doi: 10.1002/ange.201902553
    [66] NEVES Â C, CALVETE M J, PINHO E MELO T M, et al. Immobilized catalysts for hydroformylation reactions: A versatile tool for aldehyde synthesis[J]. Eur J Inorg Chem,2012,2012(32):6309−6320. doi: 10.1002/ejoc.201200709
    [67] REN X, ZHENG Z, ZHANG L, et al. Rhodium-complex-catalyzed hydroformylation of olefins with CO2 and hydrosilane[J]. Angew Chem Int Ed,2017,56(1):310−313. doi: 10.1002/anie.201608628
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  93
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2023-11-27
  • 录用日期:  2023-11-27
  • 网络出版日期:  2023-12-13
  • 刊出日期:  2024-04-03

目录

    /

    返回文章
    返回