留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Highly effective MFe2O4 (M=Zn, Mg, Cu and Mn) spinel catalysts for Fischer-Tropsch synthesis

WANG Chao CHEN Jiangang ZHU Huaqing ZHANG Wenshao BAI Hongbin ZHANG Juan

王超, 陈建刚, 朱华青, 张文绍, 白洪彬, 张娟. 高效MFe2O4(M=Zn、Mg、Cu和Mn)尖晶石催化剂应用于费托合成[J]. 燃料化学学报(中英文), 2024, 52(5): 667-676. doi: 10.1016/S1872-5813(23)60406-2
引用本文: 王超, 陈建刚, 朱华青, 张文绍, 白洪彬, 张娟. 高效MFe2O4(M=Zn、Mg、Cu和Mn)尖晶石催化剂应用于费托合成[J]. 燃料化学学报(中英文), 2024, 52(5): 667-676. doi: 10.1016/S1872-5813(23)60406-2
WANG Chao, CHEN Jiangang, ZHU Huaqing, ZHANG Wenshao, BAI Hongbin, ZHANG Juan. Highly effective MFe2O4 (M=Zn, Mg, Cu and Mn) spinel catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 667-676. doi: 10.1016/S1872-5813(23)60406-2
Citation: WANG Chao, CHEN Jiangang, ZHU Huaqing, ZHANG Wenshao, BAI Hongbin, ZHANG Juan. Highly effective MFe2O4 (M=Zn, Mg, Cu and Mn) spinel catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2024, 52(5): 667-676. doi: 10.1016/S1872-5813(23)60406-2

高效MFe2O4(M=Zn、Mg、Cu和Mn)尖晶石催化剂应用于费托合成

doi: 10.1016/S1872-5813(23)60406-2
详细信息
  • 中图分类号: TQ511

Highly effective MFe2O4 (M=Zn, Mg, Cu and Mn) spinel catalysts for Fischer-Tropsch synthesis

Funds: This project was supported by the National Natural Science Foundation of China (22072175), the Chinese Academy of Sciences Strategic Pioneer Special Fund (XDA29030402).
More Information
  • 摘要: 一系列尖晶石催化剂,包括 ZnFe2O4、MgFe2O4、CuFe2O4和MnFe2O4被用于费托合成反应(Fischer-Tropsch synthesis, FTS)。Zn、Mg、Cu和Mn很容易与Fe形成尖晶石。其中,在前处理和反应过程中,Zn和Mg能够显著维持尖晶石结构,使得CO转化率较低。在反应过程中,Cu和Mn有利于碳化铁的生成,导致CuFe2O4和MnFe2O4对FTS性能影响显著。ZnFe2O4对烃分布和C2−C4 烯/烷比影响很小。MgFe2O4的C5+选择性较低,同时由于Mg的碱性作用,从而提高了$ {\mathrm{C}}_2^=-{\mathrm{C}}_4^=$选择性和C2−C4烯/烷比。Cu可以促进催化剂的碳化,从而使CuFe2O4具有较高的活性。同时,CuFe2O4可以显著提高C5+选择性。此外,Cu可以促进H2的解离和活化,从而有利于烯烃的二次加氢,降低$ {\mathrm{C}}_2^=-{\mathrm{C}}_4^=$选择性和C2−C4烯/烷比。虽然Mn在反应过程中会促进催化剂的碳化,但MnFe2O4对碳链的长短影响很小。然而,Mn能促进少量ε-Fe2C的生成,这是导致MnFe2O4具有较高$ {\mathrm{C}}_2^=-{\mathrm{C}}_4^=$选择性和C2−C4烯/烷比的原因。同时,所有尖晶石催化剂都具有较低的二氧化碳选择性,符合当前的绿色环保发展要求。
  • FIG. 3128.  FIG. 3128.

    FIG. 3128.  FIG. 3128.

    Figure  1  SEM images of as-prepared spinel catalysts

    (a): Fe2O3; (b): ZnFe2O4; (c): MgFe2O4; (d): CuFe2O4; (e): MnFe2O4.

    Figure  2  XRD patterns of as-prepared spinel catalysts

    Figure  3  Mössbauer spectra of as-prepared spinel catalysts

    Figure  4  H2-TPR profiles of the as-prepared catalysts

    Figure  5  Mössbauer spectra of the spent spinel catalysts (The blue and green sextets are assigned to A sites and B sites of spinel or Fe3O4, the magenta, olive and violet sextets are assigned to χ-Fe5C2, the cyan sextet is assigned to ε-Fe2C and the yellow doublet is assigned to superparamagnetic Fe2+ and Fe3+)

    Figure  6  Raman spectra of spent catalysts

    Figure  7  FTS performance of spinel catalysts

    (a): CO conversion; (b): CO2 selectivity; (c): CH4 selectivity; (d): C2−C4 selectivity; (e): C5+ selectivity.

    Figure  8  (a) $ {\mathrm{C}}_2^=-{\mathrm{C}}_4^=$ selectivity and (b) the O/P ratio of C2−C4 of as-prepared spinel catalysts

    Table  1  Textural properties of the fresh catalysts

    Catalyst SBET/(m2·g−1) vpa/(cm3·g−1) dpb/nm dc/nm
    Fe2O3 58.65 0.15 8.01 30.00
    ZnFe2O4 41.92 0.13 8.20 11.50
    MgFe2O4 86.35 0.13 4.32 6.20
    CuFe2O4 34.29 0.09 7.63 10.00
    MnFe2O4 90.58 0.14 5.25 8.80
    a: BJH adsorption pore volume; b: BJH adsorption average pore size; c: Crystallite size calculated by Scherrer equation according to XRD.
    下载: 导出CSV
  • [1] ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. ChemCatChem,2010,2(9):1030−1058. doi: 10.1002/cctc.201000071
    [2] LIN T J, AN Y L, YU F, et al. Advances in selectivity control for Fischer-Tropsch synthesis to fuels and chemicals with high carbon efficiency[J]. ACS Catal,2022,12(19):12092−12112. doi: 10.1021/acscatal.2c03404
    [3] ZHAI P, SUN G, ZHU Q J, et al. Fischer-Tropsch synthesis nanostructured catalysts: Understanding structural characteristics and catalytic reaction[J]. Nanotechnol Rev,2013,2(5):547−576. doi: 10.1515/ntrev-2013-0025
    [4] TSUBAKI N, FUJIMOTO K. Product control in Fischer-Tropsch synthesis[J]. Fuel Process Technol,2000,62(2/3):173−186. doi: 10.1016/S0378-3820(99)00122-8
    [5] FLORY P J. Molecular size distribution in linear condensation polymers[J]. J Am Chem Soc,1936,58:1877−1885. doi: 10.1021/ja01301a016
    [6] LI Y W, ZHANG X, WEI M. New development in Fe/Co catalysts: Structure modulation and performance optimization for syngas conversion[J]. Chin J Catal,2018,39(8):1329−1346. doi: 10.1016/S1872-2067(18)63100-6
    [7] VASILEV A A, IVANTSOV M I, DZIDZIGURI E L, et al. Size effect of the carbon-supported bimetallic Fe-Co nanoparticles on the catalytic activity in the Fischer-Tropsch synthesis[J]. Fuel, 2022, 310 : 122455.
    [8] LI J F, CHENG X F, ZHANG C H, et al. Alkalis in iron-based Fischer-Tropsch synthesis catalysts: Distribution, migration and promotion[J]. J Chem Technol Biotechnol,2017,92(6):1472−1480. doi: 10.1002/jctb.5152
    [9] PENDYALA V R R, GRAHAM U M, JACOBS G, et al. Fischer-Tropsch synthesis: Deactivation as a function of potassium promoter loading for precipitated iron catalyst[J]. Catal Lett,2014,144(10):1704−1716. doi: 10.1007/s10562-014-1336-z
    [10] LI J F, ZHANG C H, CHENG X F, et al. Effects of alkaline-earth metals on the structure, adsorption and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Appl Catal A: Gen,2013,464:10−19.
    [11] CHONCO Z H, LODYA L, CLAEYS M, et al. Copper ferrites: A model for investigating the role of copper in the dynamic iron-based Fischer-Tropsch catalyst[J]. J Catal,2013,308:363−373. doi: 10.1016/j.jcat.2013.08.012
    [12] ZHAO M, CUI Y, SUN J C, et al. Modified iron catalyst for direct synthesis of light olefin from syngas[J]. Catal Today,2018,316:142−148. doi: 10.1016/j.cattod.2018.05.018
    [13] LI S, LI A, KRISHNAMOORTHY S, et al. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett,2001,77(4):197−205. doi: 10.1023/A:1013284217689
    [14] SHI B F, ZHANG Z P, LIU Y T, et al. Promotional effect of Mn-doping on the structure and performance of spinel ferrite microspheres for CO hydrogenation[J]. J Catal,2020,381:150−162. doi: 10.1016/j.jcat.2019.10.034
    [15] YANG Z X, ZHANG Z P, LIU Y T, et al. Tuning direct CO hydrogenation reaction over Fe-Mn bimetallic catalysts toward light olefins: Effects of Mn promotion[J]. Appl Catal B: Environ, 2021, 285 .
    [16] CANNAS C, FALQUI A, MUSINU A, et al. CoFe2O4 nanocrystalline powders prepared by citrate-gel methods: Synthesis, structure and magnetic properties[J]. J Nanopart Res,2006,8(2):255−267. doi: 10.1007/s11051-005-9028-7
    [17] SHI B F, ZHANG Z P, ZHA B B, et al. Structure evolution of spinel Fe-M-II (M=Mn, Fe, Co, Ni) ferrite in CO hydrogeneration[J]. Mol Catal,2018,456:31−37. doi: 10.1016/j.mcat.2018.06.019
    [18] CASULA M F, CONCAS G, CONGIU F, et al. Characterization of stoichiometric nanocrystalline spinel ferrites dispersed on porous silica aerogel[J]. J Nanosci Nanotechnol,2011,11(11):10136−10141. doi: 10.1166/jnn.2011.4975
    [19] LIANG M S, KANG W K, XIE K C. Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique[J]. J Nat Gas Chem,2009,18(1):110−113. doi: 10.1016/S1003-9953(08)60073-0
    [20] MA L J, CHEN L S, CHEN S Y. Study on the characteristics and activity of Ni-Cu-Zn ferrite for decomposition of CO2[J]. Mater Chem Phys,2009,114(2/3):692−696. doi: 10.1016/j.matchemphys.2008.10.050
    [21] GE X, LI M S, SHEN J Y. The reduction of Mg-Fe-O and Mg-Fe-Al-O complex oxides studied by temperature-programmed reduction combined with in situ Mössbauer spectroscopy[J]. J Solid State Chem,2001,161(1):38−44. doi: 10.1006/jssc.2001.9264
    [22] WANG C, ZHU H, ZHANG J, et al. Tuning Fischer-Tropsch synthesis product distribution toward light olefins over nitrided Fe-Mn bimetallic catalysts[J]. Fuel,2023,343:127977. doi: 10.1016/j.fuel.2023.127977
    [23] DE SMIT E, CINQUINI F, BEALE A M, et al. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: Controlling μC[J]. J Am Chem Soc,2010,132(42):14928−14941. doi: 10.1021/ja105853q
    [24] PENDYALA V R R, JACOBS G, MOHANDAS J C, et al. Fischer-Tropsch synthesis: Effect of water over iron-based catalysts[J]. Catal Lett,2010,140(3/4):98−105. doi: 10.1007/s10562-010-0452-7
    [25] SATTERFIELD C N, HANLON R T, TUNG S E, et al. Effect of water on the iron-catalyzed Fischer-Tropsch synthesis[J]. Ind Eng Chem Prod Res Dev,1986,25(3):407−414. doi: 10.1021/i300023a007
    [26] DRY M E, SHINGLES T, BOTHA C. Factors influencing the formation of carbon on iron Fischer-Tropsch catalysts: I. The influence of promoters[J]. J Catal,1970,17(3):341−346. doi: 10.1016/0021-9517(70)90109-0
    [27] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37(12):2758−2781. doi: 10.1039/b805427d
    [28] XU Y F, LI X Y, GAO J H, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science,2021,371(6529):610−613. doi: 10.1126/science.abb3649
    [29] YU X F, ZHANG J L, WANG X, et al. Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity[J]. Appl Catal B: Environ,2018,232:420−428. doi: 10.1016/j.apcatb.2018.03.048
    [30] GALVIS H M T, DE JONG K P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catal,2013,3(9):2130−2149. doi: 10.1021/cs4003436
    [31] GONG W B, YE R P, DING J, et al. Effect of copper on highly effective Fe-Mn based catalysts during production of light olefins via Fischer-Tropsch process with low CO2 emission[J]. Appl Catal B: Environ, 2020, 278 .
    [32] LI T Z, WANG H L, YANG Y, et al. Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis[J]. J Energy Chem,2013,22(4):624−632. doi: 10.1016/S2095-4956(13)60082-0
    [33] ABBOT J, CLARK N J, BAKER B G. Effects of sodium, aluminium and manganese on the Fischer-Tropsch synthesis over alumina-supported iron catalysts[J]. Appl Catal,1986,26(1/2):141−153.
    [34] BUKUR D B, MUKESH D, PATEL S A. Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis[J]. Ind Eng Chem Res,1990,29(2):194−204. doi: 10.1021/ie00098a008
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  24
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-05
  • 修回日期:  2023-11-06
  • 录用日期:  2023-11-06
  • 网络出版日期:  2024-01-18
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回