留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu-ZSM-5催化分解NO的机理

张欢 刘梁 史一林 乔晓磊 金燕

张欢, 刘梁, 史一林, 乔晓磊, 金燕. Cu-ZSM-5催化分解NO的机理[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60408-6
引用本文: 张欢, 刘梁, 史一林, 乔晓磊, 金燕. Cu-ZSM-5催化分解NO的机理[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60408-6
ZHANG Huan, LIU Liang, SHI Yilin, QIAO Xiaolei, JIN Yan. Mechanism of catalytic decomposition of NO by Cu-ZSM-5[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60408-6
Citation: ZHANG Huan, LIU Liang, SHI Yilin, QIAO Xiaolei, JIN Yan. Mechanism of catalytic decomposition of NO by Cu-ZSM-5[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60408-6

Cu-ZSM-5催化分解NO的机理

doi: 10.1016/S1872-5813(23)60408-6
基金项目: 国家自然科学基金 (U1910214)资助
详细信息
    通讯作者:

    Tel: 13934630502, E-mail: jinyan@tyut.edu.cn

  • 中图分类号: X511, X78

Mechanism of catalytic decomposition of NO by Cu-ZSM-5

Funds: The project was supported by National Natural Science Foundation of China (U1910214).
  • 摘要: Cu-ZSM-5催化分解NO具有潜在的应用前景。为揭示NO在Cu-ZSM-5催化剂的催化分解机理,基于密度泛函模拟了NO在Cu-ZSM-5催化剂中短距离Cu+对上的吸附,并提出副产物N2O、NO2辅助催化分解NO的反应路径。计算结果表明,双核铜氧物种是Cu基催化剂的重要活性中心。催化分解NO过程中,副产物NO2在双核铜氧物种上的分解需要的活化能最高(为171.39 kJ/mol),N2O分解需要86.92 kJ/mol的活化能垒,表明NO2在活性位的分解难于N2O的分解。N2、O2的解析分别吸收28.43、100.78 kJ/mol的热量,限速步骤为O2的脱附。NO既作为反应物,同时又是催化过程中Cu-ZSM-5催化剂活性中心实现氧化还原循环的关键还原剂。
  • 图  1  Cu-ZSM-5催化剂模型的侧视图和主视图

    Figure  1  Side view and front view of Cu-ZSM-5 catalyst model

    图  2  NO在Cu-ZSM-5上吸附后的构型

    Figure  2  Conformations of NO after adsorption on Cu-ZSM-5

    图  3  Cu1-ON-NO-Cu2-TS和N2O-Cu-O-Cu优化后的构型及部分参数

    Figure  3  Optimized structure and parameters of Cu1-ON-NO-Cu2-TS and N2O-Cu-O-Cu

    图  4  中间体N2O形成的能垒图

    Figure  4  Energy barrier for the formation of the intermediate N2O

    图  5  Cu-Cu-N2O和Cu-Cu-NNO-TS优化后的构型及参数

    Figure  5  Optimized structure and parameters of Cu-Cu-N2O and Cu-Cu-NNO-TS

    图  6  Cu-Cu-O--NN和Cu-O-Cu优化后的构型及参数

    Figure  6  Optimized structure and parameters of Cu-Cu-O--NN and Cu-O-Cu

    图  7  N2解离的能垒图

    Figure  7  Energy barrier diagram of N2 dissociation

    图  8  Cu-O-Cu--NO和Cu-O-NO-Cu-TS优化后的构型及部分参数

    Figure  8  Optimized structure and parameters of Cu-O-Cu--NO and Cu-O-NO-Cu-TS

    图  9  NO还原活性中心的势能图

    Figure  9  Potential energy diagram of NO-reduced active centers

    图  10  Cu-ONO-Cu和Cu-Cu-NO2优化后的构型及参数

    Figure  10  Optimized structure and parameters of Cu-ONO-Cu and Cu-Cu-NO2

    图  11  Cu-O-Cu-NO2和Cu-O-Cu-NO2-TS优化后的构型及参数

    Figure  11  Optimized structure and parameters of Cu-O-Cu-NO2 and Cu-O-Cu-NO2-TS

    图  12  Cu-O-ONO-Cu和Cu-O-O-Cu优化后的构型及参数

    Figure  12  Optimized structure and parameters of Cu-O-ONO-Cu and Cu-O-O-Cu

    图  13  O2脱附的能垒图

    Figure  13  Energy barrier of O2 desorption

    表  1  NO在Cu-ZSM-5上催化分解的能垒

    Table  1  Energy barrier for the catalytic decomposition of NO on Cu-ZSM-5

    Elementary step Barrier/(kJ·mol−1)
    Cu-Cu+2NO→Cu-O-Cu+N2O 16.55
    Cu-Cu+N2O→Cu-O-Cu+N2 86.92
    Cu-O-Cu+NO→Cu-Cu+NO2 86.22
    Cu-O-Cu+NO2→Cu-NO3-Cu→Cu-Cu+NO+O2 171.39
    下载: 导出CSV
  • [1] 张霄玲. 低温锰系催化剂制备及烟气脱硫脱硝性能研究[D]. 北京: 中国科学院大学, 2020.

    ZHANG Xiaoling. Synthesis of manganese based catalyst for desulfurization and denitrification from low-temperature flue gas[D]. Beijing: University of Chinese Academy of Sciences. 2020.)
    [2] GOU X, ZHANG K, LIU L S, et al. Study on noble metal catalyst for selective catalytic reduction of NO x at low temperature[J]. Appl Mech Mater,2013,448:885−889.
    [3] IWAMOTO M, FURUKAWA H, MINE Y, et al. Copper(II)ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide[J]. J Chem Soc, Chem Commun,1986,16(16):1272−1273.
    [4] IWAMOTO M, YAHIRO H, TANDA K, et al. Removal of nitrogen monoxide through a novel catalytic process. 1. decomposition on excessively copper-ion-exchanged ZSM-5 zeolites[J]. J Phys Chem B,1991,22(34):3727−3730.
    [5] SPOTO G, ZECCHINA A, BORDIGA S, et al. Cu(I)-ZSM-5 zeolites prepared by reaction of H-ZSM-5 with gaseous CuCl: Spectroscopic characterization and reactivity towards carbon monoxide and nitric oxide[J]. Appl Catal B: Environ,1994,3(2/3):151−172. doi: 10.1016/0926-3373(93)E0032-7
    [6] VALYON J, HALL W K. Studies of the surface species formed from NO on copper zeolites[J]. J Phys Chem,1993,97(6):1204−1212. doi: 10.1021/j100108a016
    [7] MORPURGO S, MORETTI G, BOSSA M. A computational study on the mechanism of NO decomposition catalyzed by Cu-ZSM-5: A comparison between single and dimeric Cu+ active sites[J]. J Mol Catal A: Chem,2012,358:134−144.
    [8] COSTA P D, MODÉN B, MEITZNER G D, et al. Spectroscopic and chemical characterization of active and inactive Cu species in NO decomposition catalysts based on Cu-ZSM-5[J]. Phys Chem Chem Phys,2002,4(18):4590−4601. doi: 10.1039/B203700A
    [9] SENGUPTA D, ADAMS J B, SCHNEIDER W F, et al. Theoretical analysis of N2O to N2 conversion during the catalytic decomposition of NO by Cu-Zeolites[J]. Catal Lett,2001,74(3):193−199.
    [10] SOLANS-MONFORT X, BRANCHADELL V, SODUPE M. On the NO decomposition by Cu−ZSM-5 through the ZCu(NO2)(NO) or ZCu(N2O3) intermediates[J]. J Phys Chem B,2002,106(6):1372−1379. doi: 10.1021/jp0130620
    [11] LIU X, YANG Z Y, LI Y P, et al. Theoretical study of N2O decomposition mechanism over binuclear Cu-ZSM-5 zeolites[J]. J Mol Catal A: Chem, 2015, 396: 181−187.
    [12] SMEETS P J, GROOTHAERT M H, VAN TEEFFELEN R M, et al. Direct NO and N2O decomposition and NO-assisted N2O decomposition over Cu-zeolites: Elucidating the influence of the CuCu distance on oxygen migration[J]. J Catal,2007,245(2):358−368. doi: 10.1016/j.jcat.2006.10.017
    [13] LI G, VASSILEV P, SANCHEZ S M, et al. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol[J]. J Catal,2016,338:305−312. doi: 10.1016/j.jcat.2016.03.014
    [14] 高丛茹. Cu-ZSM-5催化N2O分解和NOx还原过程机理研究[D]. 北京: 北京化工大学, 2023.

    GAO Congru. Study on the mechanism of Cu-ZSM-5 catalyzed N2O decomposition and NOx reduction[D]. Beijing: Beijing University of Chemical Technology, 2023.)
    [15] 何俊龙. 第一性原理研究NO在3d过渡金属掺杂石墨烯上的催化还原反应[D]. 上海: 东华大学, 2021.

    HE Junlong. The first principles calculation of NO catalytic reduction on 3d transition metal-doped graphene[D]. Shanghai: Donghua University, 2021.)
    [16] 霍培英. 铜钴二元合金团簇吸附特性及NO分解机理的密度泛函理论研究[D]. 镇江: 江苏科技大学, 2019.

    HUO Peiying. Density functional theory study on adsorption properties and NO decomposition mechanism of Cu-Co bimetallic clusters[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.)
    [17] 尤丽霞, 刘子忠, 刘红霞. NO自促还原反应机理的密度泛函研究[J]. 宝鸡文理学院学报(自然科学版),2016,36(1):30−35.

    YOU Lixia, LIU Zizhong, LIU Hongxia. A density functional study on the self-promoting reduction reaction mechanism of NO[J]. J Baoji Univ Arts Sci (Nat Sci Ed),2016,36(1):30−35.
    [18] 王焕然. Fe-C催化剂协同CO催化还原NO研究[D]. 鞍山: 辽宁科技大学, 2023.

    WANG Huanran. A fundamental study of NO reduction over Fe-C catalysts with CO as the reductant[D]. Anshan: University of Science and Technology Liaoning, 2023.)
    [19] LI P Y, LU F, YUAN F L, et al. Effect of surface copper species on NO+CO reaction over xCuO-Ce0.9Zr0.1O2 catalysts: In situ DRIFTS studies[J]. Catal,2016,6(8):124.
    [20] LIU L, YU Q, ZHU J, et al. Effect of MnO x modification on the activity and adsorption of CuO/Ce0.67Zr0.33O2 catalyst for NO reduction[J]. J Colloid Interface Sci,2010,349(1):246−255. doi: 10.1016/j.jcis.2010.05.044
    [21] ZHANG X, CHENG X, MA C, et al. Effects of the Fe/Ce ratio on the activity of CuO/CeO2-Fe2O3 catalysts for NO reduction by CO[J]. Catal Sci Technol,2018,8(13):3336−3345. doi: 10.1039/C8CY00709H
    [22] WANG J, XIA H, JU X, et al. Catalytic performance of different types of iron zeolites in N2O decomposition[J]. Chin J Catal,2013,34(5):876−888. doi: 10.1016/S1872-2067(12)60555-5
    [23] MENG T, REN N, MA Z. Silicalite-1@Cu-ZSM-5 core-shell catalyst for N2O decomposition[J]. J Mol Catal A: Chem,2015,404-405:233−239.
    [24] 刘清雅, 刘振宇, 李成岳. NH3在选择性催化还原NO过程中的吸附与活化[J]. 催化学报,2006,27(7):636−646. doi: 10.3321/j.issn:0253-9837.2006.07.022

    LIU Qingya, LIU Zhenyu, LI Chengyue. Adsorption and activation of NH3 during selective catalytic reduction of NO by NH3[J]. Chin J Catal,2006,27(7):636−646. doi: 10.3321/j.issn:0253-9837.2006.07.022
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 修回日期:  2024-01-09
  • 录用日期:  2024-01-15
  • 网络出版日期:  2024-02-28

目录

    /

    返回文章
    返回