留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜基载氧体催化电厂烟气脱氧研究

司马皓 王雪峰 邓存宝

司马皓, 王雪峰, 邓存宝. 铜基载氧体催化电厂烟气脱氧研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60409-8
引用本文: 司马皓, 王雪峰, 邓存宝. 铜基载氧体催化电厂烟气脱氧研究[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60409-8
SIMA Hao, WANG Xuefeng, DENG Cunbao. Study on copper-based oxygen carrier catalytic power plant flue gas deoxidation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60409-8
Citation: SIMA Hao, WANG Xuefeng, DENG Cunbao. Study on copper-based oxygen carrier catalytic power plant flue gas deoxidation[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60409-8

铜基载氧体催化电厂烟气脱氧研究

doi: 10.1016/S1872-5813(23)60409-8
基金项目: 国家自然科学基金联合基金 ( U1810206 )资助
详细信息
    通讯作者:

    Tel: 13303433823, E-mail:wangxuefeng01@tyut.edu.cn

  • 中图分类号: X936

Study on copper-based oxygen carrier catalytic power plant flue gas deoxidation

Funds: The project was supported by National Natural Science Foundation Joint fund project of China ( U1810206 ).
  • 摘要: 电厂烟气主要成分为N2、CO2和部分O2,将电厂烟气注入矿井采空区可实现CO2封存,并替代注氮气防治遗煤自燃,但是烟气中的O2是造成遗煤自燃的因素之一。因此,亟待开发一种经济有效的催化剂来脱除电厂烟气中的O2。本研究采用共沉淀法,通过调变载体和负载量可控制备了铜基催化剂和系列xCuO/CeO2催化剂,利用BET、XRD、ICP、TEM、H2-TPR和XPS等手段对催化剂进行了表征,并建立催化剂结构与催化电厂烟气脱氧性能之间的构效关系。结果表明,CeO2的加入提高了CuO的分散性、增加了催化剂的氧空位,提高了催化剂的活性和还原氧化性能,Cu-Ce界面结构的协同效应促进了还原氧化过程,表现出良好的活性和循环稳定性。30CuO/CeO2由于其CuO颗粒尺寸最小、分散性最高、氧空位浓度最高,表现出较优的催化电厂烟气脱氧性能。本研究为开发低成本可循环使用、高活性和高稳定性的脱氧催化剂提供了参考。
  • 图  1  Cu基催化剂的XRD谱图(a)和xCuO/CeO2催化剂的XRD谱图(b)

    Figure  1  XRD patterns of Cu-based catalysts (a) and XRD patterns of xCuO/CeO2 catalysts (b)

    图  2  40CuO/CeO2催化剂的HRTEM 照片

    Figure  2  HRTEM photograph of 40CuO/CeO2

    图  3  40CuO/CeO2催化剂反应前后的XRD谱图

    Figure  3  XRD patterns of 40CuO/CeO2 catalyst before and after the reaction

    图  4  催化剂的H2-TPR谱图(a)和(b)

    Figure  4  H2-TPR of the catalysts (a) and (b)

    图  5  xCuO/CeO2催化剂的XPS谱图

    Figure  5  XPS spectra of xCuO/CeO2 catalysts O 1s (a) ; Cu 2p (b) ; Ce 3d (c)

    图  6  40CuO/CeO2、40CuO/MgO、40CuO/Al2O3、40CuO/SiO2催化剂在250 ℃下的还原性能(a)和氧化性能(b)

    Figure  6  Reduction performance (a) and oxidation performance (b) curves of 40CuO/CeO2, 40CuO/MgO, 40CuO/Al2O3 and 40CuO/SiO2 catalysts at 250 ℃

    图  7  40CuO/CeO2催化剂在不同温度下的还原性能(a)和氧化性能(b)

    Figure  7  Reduction performance (a) and oxidation performance (b) curves of 40CuO/CeO2 catalysts at different temperatures

    图  8  xCuO/CeO2催化剂在250 ℃下的还原性能(a)和氧化性能(b)

    Figure  8  Reduction performance (a) and oxidation performance (b) curves of xCuO/CeO2 catalysts at 250 ℃

    图  9  30CuO/CeO2催化剂在不同氧浓度下的氧化性能

    (反应条件:GHSV=420 mL/(g·h),O2:N2:CO2=x:21:79-x,其中x分别为4、5、7、10)

    Figure  9  Oxidation performance of 30CuO/CeO2 catalyst at different oxygen concentrations

    Reaction conditions: GHSV=420 mL/(g·h), O2∶N2∶CO2=x∶21∶79−x, where x is 4, 5, 7, 10.

    图  10  30CuO/CeO2催化剂在不同气体流量下的氧化性能

    Figure  10  Oxidation performance of 30CuO/CeO2 catalysts at different gas flow rates

    图  11  30CuO/CeO2催化剂CLC循环实验的热重曲线

    (反应条件:H2:N2=10:90,N2,O2:N2:CO2=5:15:80,流速50 mL/min)

    Figure  11  Thermogravimetric curve of 30CuO/CeO2 catalyst for CLC cycling experiments

    Reaction condition: H2∶N2=10∶90, N2, O2∶N2∶CO2=5∶15∶80, flow rate 50 mL/min.

    图  12  30CuO/CeO2、40CuO/Al2O3、40CuO/MgO、40CuO/SiO2催化剂在250 ℃的H2-TPR谱图

    Figure  12  H2-TPR of 30CuO/CeO2, 40CuO/Al2O3, 40CuO/MgO, 40CuO/SiO2 catalysts at 250 ℃

    表  1  催化剂的物理参数

    Table  1  Physical parameters of the catalyst

    Catalyst dCuO/nm Abefore/(m2·g−1 Aafter/(m2·g−1 vbefore/(cm3·g−1 vafter/(cm3·g−1 Cu w/%
    CuO 40 1.929 1.897 0.005 0.005
    40CuO/MgO 23 10.393 10.048 0.047 0.044 40.493
    40CuO/Al2O3 11 21.790 21.304 0.110 0.062 41.508
    40CuO/SiO2 13 18.155 18.096 0.103 0.098 40.464
    40CuO/CeO2 17 15.796 8.477 0.101 0.060 39.112
    30CuO/CeO2 15 21.380 17.451 0.140 0.109 30.412
    20CuO/CeO2 16 19.159 15.374 0.052 0.112 20.019
    10CuO/CeO2 19 18.439 14.877 0.123 0.096 9.984
    下载: 导出CSV

    表  2  xCuO/CeO2的XPS表征

    Table  2  XPS results of xCuO/CeO2 catalyst

    Catalyst Ce3+/(Ce3++Ce4+)/%
    10CuO/CeO2 13.54
    20CuO/CeO2 16.78
    30CuO/CeO2 23.19
    40CuO/CeO2 15.02
    下载: 导出CSV
  • [1] 荆蕊, 王雪峰, 乔玲, 等. 电厂烟气注入采空区防灭火技术的研究进展[J]. 煤炭工程,2021,53(11):125−130.

    JING Rui, WANG Xuefeng , QIAO Ling, et al. Research status and future prospect of power plant flue gas sealed in goaf[J]. Coal Eng,2021,53(11):125−130.
    [2] 黄戈, 王继仁, 邓存宝, 等. 电厂烟道气预防遗煤自燃的合理含氧量模拟研究[J]. 中国安全科学学报,2017,27(3):42−47.

    HUANG Ge, WANG Jiren, DENG Cunbao, et al. Numerical simulation of reasonable oxygen content in flue gas for preventing residual coal spontaneous combustion[J]. China Saf Sci J,2017,27(3):42−47.
    [3] COLUSSI S, TROVARELLI A, GROPPI G, et al. The effect of CeO2 on the dynamics of Pd-PdO transformation over Pd/Al2O3 combustion catalysts[J]. Catal Commun,2007,8(8):1263−1266. doi: 10.1016/j.catcom.2006.11.020
    [4] 张艳, 张永发, 张国杰. 含氧煤层气脱氧过程中硫化物的脱氧特性[J]. 煤炭转化,2009,32(1):68−71. doi: 10.3969/j.issn.1004-4248.2009.01.015

    ZHANG Yan, ZHANG Yongfa, ZHANG Guojie. Deoxygenation characteristic of sulfide oxidation in the process of oxygen-bearing coal mine methane[J]. Coal Convers,2009,32(1):68−71. doi: 10.3969/j.issn.1004-4248.2009.01.015
    [5] RYDEN M, LYNGFELT A, MATTISSON T. Chemical-looping combustion and chemical-looping reforming in a circulating fluidized-bed reactor using Ni-based oxygen carriers[J]. Energy Fuels,2008,22(4):2585−2597. doi: 10.1021/ef800065m
    [6] KWAK B, PARK N, RYU H, et al. Reduction and oxidation performance evaluation of manganese-based iron, cobalt, nickel, and copper bimetallic oxide oxygen carriers for chemical-looping combustion[J]. Appl Therm Eng,2018,128:1273−1281. doi: 10.1016/j.applthermaleng.2017.09.111
    [7] MATTISSON T, JERNDAL E, LINDERHOLM C, et al. Reactivity of a spray-dried NiO/NiAl2O4 oxygen carrier for chemical-looping combustion[J]. Chem Eng Sci,2011,66(20):4636−4644. doi: 10.1016/j.ces.2011.06.025
    [8] KOLBITSCH P, JOHANNES B, PROLL T, et al. Comparison of two ni-based oxygen carriers for chemical looping combustion of natural gas in 140 kW continuous looping operation[J]. Ind Eng Chem Res,2009,48(11):5542−5547. doi: 10.1021/ie900123v
    [9] TIJANI M, AQSHA A, MAHINPEY N. Synthesis and study of metal-based oxygen carriers (Cu, Co, Fe, Ni) and their interaction with supported metal oxides (Al2O3, CeO2, TiO2, ZrO2) in a chemical looping combustion system[J]. Energy,2017,138:873−882. doi: 10.1016/j.energy.2017.07.100
    [10] 杨浩, 郑华艳, 常瑜, 等. 以共沉淀法为基础的铜基催化剂制备新技术的研究进展[J]. 化工进展,2014,(2):379−386. doi: 10.3969/j.issn.1000-6613.2014.02.020

    YANG Hao, ZHENG Huayan, CHANG Yu, et al. Research progress of preparation of copper-based catalyst by coprecipitation[J]. Chem Ind Eng Prog,2014,(2):379−386. doi: 10.3969/j.issn.1000-6613.2014.02.020
    [11] LUO M, SONG Y, LU J, et al. Identification of CuO species in high surface area CuO−CeO2 Catalysts and their catalytic activities for CO oxidation[J]. J Phys Chem C,2007,111(34):12686−12692. doi: 10.1021/jp0733217
    [12] 陈国星, 李巧灵, 魏育才, 等. 镍促进CuO-CeO2催化剂的结构表征及低温CO氧化活性[J]. 催化学报,2013,34(2):322−329. doi: 10.1016/S1872-2067(11)60468-3

    CHEN Guoxing, LI Qiaoling, WEI Yucai, et al. Low temperature Co oxidation on Ni-promoted CuO-CeO2 catalysts[J]. Chin J Catal,2013,34(2):322−329. doi: 10.1016/S1872-2067(11)60468-3
    [13] 杨志强, 毛东森, 郭强胜, 等. 制备方法对CuO/CeO2-ZrO2催化CO低温氧化活性的影响[J]. 物理化学学报,2010,26(12):3278−3284. doi: 10.3866/PKU.WHXB20101210

    YANG Zhiqiang, MAO Dongsen, GUO Qiangsheng, et al. Effect of preparation method on the activity of CuO/CeO2-ZrO2 catalysts for low temperature CO oxidation[J]. Acta Phys -Chim Sin,2010,26(12):3278−3284. doi: 10.3866/PKU.WHXB20101210
    [14] ZOU Z, MENG M, ZHA Y. Surfactant-assisted synthesis, characterizations, and catalytic oxidation mechanisms of the mesoporous MnOx-CeO2and Pd/MnOx-CeO2catalysts used for CO and C3H8 oxidation[J]. J Phys Chem C,2010,114(1):468−477. doi: 10.1021/jp908721a
    [15] QI L, YU Q, DAI Y, et al. Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation[J]. Appl Catal B: Environ,2012,119:308−320.
    [16] ZENG S, LIU K, ZHANG L, et al. Deactivation analyses of CeO2/CuO catalysts in the preferential oxidation of carbon monoxide[J]. J Power Sources,2014,261:46−54. doi: 10.1016/j.jpowsour.2014.03.043
    [17] ZHAO Q , LIU Q, ZHENG Y, et al. Enhanced catalytic performance for volatile organic compound oxidation over in-situ growth of MnOx on Co3O4 nanowire[J]. Chemosphere, 2020, 244 (C): 125−532.
    [18] WANG X, WANG S, WANG S, et al. The preparation of Au/CeO2 catalysts and their activities for low-temperature CO oxidation[J]. Catal Letters,2006,112(1/2):115−119. doi: 10.1007/s10562-006-0173-0
    [19] GUO Z, SEOL M, KIM M, et al. Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors[J]. Nanoscale,2012,4(23):7525. doi: 10.1039/c2nr32556j
    [20] REDDY B, BHARALI P, SAIKIA P, et al. Structural Characterization and catalytic activity of nanosized Ce x M1− x O2(M = Zr and Hf) mixed oxides[J]. J Phys Chem C,2008,112(31):11729−11737. doi: 10.1021/jp802674m
    [21] QIN J, LU J, CAO M, et al. Synthesis of porous CuO-CeO2 nanospheres with an enhanced low-temperature CO oxidation activity[J]. Nanoscale,2010,2(12):2739. doi: 10.1039/c0nr00446d
    [22] GHOLAMI Z, LUO G. Low-Temperature selective catalytic reduction of NO by CO in the presence of O2 over Cu: Ce catalysts supported by multiwalled carbon nanotubes[J]. Ind Eng Chem Res,2018,57(27):8871−8883. doi: 10.1021/acs.iecr.8b01343
    [23] JOHNSTON-PECK A, SENANAYAKE S. , PLATA J, et al. Nature of the mixed-oxide interface in ceria-titania catalysts: Clusters, chains, and nanoparticles[J]. J Phys Chem C,2013,117(28):14463−14471. doi: 10.1021/jp3125268
    [24] MUNOZ-BATISTA M, GOMEZ-CEREZO M, KUBACKA A, et al. Role of interface contact in CeO2-TiO2 photocatalytic composite materials[J]. ACS Catal,2014,4(1):63−72. doi: 10.1021/cs400878b
    [25] TROGADAS P, PARRONDO J, RAMANI V. CeO2 surface oxygen vacancy concentration governs in situ free radical scavenging efficacy in polymer electrolytes[J]. ACS Appl Mater Interfaces,2012,4(10):5098−5102. doi: 10.1021/am3016069
    [26] KUMAR A, BABU S, KARAKOTI A, et al. Luminescence properties of europium-doped cerium oxide nanoparticles: Role of vacancy and oxidation states[J]. Langmuir,2009,25(18):10998−11007. doi: 10.1021/la901298q
    [27] BERA P, PRIOLKAR K, SARODE P. Structural investigation of combustion synthesized CuCeO2 catalysts by exafs and other physical techniques: Formation of a Ce1− x Cu x O2− δ solid solution[J]. Chem Mater,2002,14(8):3591−3601. doi: 10.1021/cm0201706
    [28] WAN H, LI D, DAI Y, et al. Catalytic behaviors of CuO supported on Mn2O3 modified γ-Al2O3 for NO reduction by CO[J]. J Mol Catal A Chem,2010,332(1/2):32−44. doi: 10.1016/j.molcata.2010.08.016
    [29] DI MONTE R, KASPAR J, FORNASIERO P, et al. NO reduction by CO over Pd/Ce0.6Zr0.4O2 Al2O3 catalysts: In situ FT-IR studies of NO and CO adsorption[J]. Inorganica Chim Acta,2002,334:318−326. doi: 10.1016/S0020-1693(02)00800-9
    [30] QI G, YANG R. Characterization and FT-IR studies of MnOx−CeO2 catalyst for low-temperature selective catalytic reduction[J]. J Phys Chem B,2004,40(18):15738−15747.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  22
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-01-16
  • 录用日期:  2024-01-17
  • 网络出版日期:  2024-02-28

目录

    /

    返回文章
    返回