留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小晶粒NiY分子筛的合成及其加氢裂化反应性能

孙劲晓 王晓晗 魏强 周亚松

孙劲晓, 王晓晗, 魏强, 周亚松. 小晶粒NiY分子筛的合成及其加氢裂化反应性能[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60432-9
引用本文: 孙劲晓, 王晓晗, 魏强, 周亚松. 小晶粒NiY分子筛的合成及其加氢裂化反应性能[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60432-9
SUN Jinxiao, WANG Xiaohan, WEI Qiang, ZHOU Yasong. Synthesis and hydrocracking performance of small crystal NiY zeolites[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60432-9
Citation: SUN Jinxiao, WANG Xiaohan, WEI Qiang, ZHOU Yasong. Synthesis and hydrocracking performance of small crystal NiY zeolites[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60432-9

小晶粒NiY分子筛的合成及其加氢裂化反应性能

doi: 10.1016/S1872-5813(24)60432-9
基金项目: 国家自然科学基金 (22078360)资助
详细信息
    通讯作者:

    E-mail: qwei@cup.edu.cn

    zhouyasong2011@163.com

  • 中图分类号: O643

Synthesis and hydrocracking performance of small crystal NiY zeolites

Funds: The project was supported by National Natural Science Foundation of China (22078360).
  • 摘要: 通过原位合成法在小晶粒Y分子筛合成的过程中,引入Ni源合成了一系列不同Ni掺入量的小晶粒Y-xNi分子筛,将活性金属Ni预浸渍到Y分子筛的骨架中。将Y-xNi分子筛和ASA混合作为载体并采用等体积浸渍法负载Ni、W制备Cat-xNi系列加氢裂化催化剂。以正十六烷为反应物,探究其加氢裂化反应性能。采用扫描电子显微镜(SEM)、X-射线衍射(XRD)、N2吸附-脱附、氨气程序升温脱附(NH3-TPD)、氢气程序升温还原(H2-TPR)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等表征手段分析了Ni的掺入对Y分子筛及催化剂理化性质的影响。结果表明,Ni主要取代Al引入Y分子筛骨架。在Y分子筛中适量掺入Ni会提高Y分子筛的相对结晶度以及Brønsted酸和Lewis酸位点的数量,但过量的Ni掺入不利于Y分子筛的结晶。Ni掺入削弱了金属与载体间的相互作用,提高了活性金属的硫化度及NiWS活性相的堆积数及分散度,调节了催化剂上金属中心与酸中心的匹配。催化性能评价表明,Ni改性有利于提高中间馏分产物(C8−C12)的选择性及收率。即同时增加Brønsted酸中心与NiWS活性中心数量、提高了金属中心与酸中心之间的协同作用,在提高转化率的同时避免过度裂化,提高中间馏分产物的收率。在360 ℃反应温度下,催化剂Cat-0.2Ni具有较高的n-C16转化率和C8−C12产物收率,n-C16转化率较Cat-0Ni提高了10.2个百分点,C8−C12产物收率为65.4%。采用原位合成法将活性金属Ni预浸渍在Y分子筛上可以有效调节裂化活性中心与加氢活性中心之间的平衡而提高催化活性和中间馏分产物的收率。
  • 图  1  Y-xNi系列分子筛的XRD谱图

    Figure  1  XRD patterns of the synthesized Y-xNi zeolites (a) from 5° to 60° and (b) from 5.0° to 8.0°

    图  2  Y-xNi系列分子筛的SEM照片

    Figure  2  SEM images of the synthesized Y-xNi zeolites

    图  3  Y-xNi系列分子筛的N2吸附-脱附等温曲线(a)和孔径分布(b)

    Figure  3  N2 adsorption-desorption (a) and pore size distribution curves (b) of the synthesized Y-xNi zeolites

    图  4  Y-xNi系列分子筛的Ni 2p XPS(a), O 1s XPS(b), Al 2p XPS(c)和Si 2p XPS(d)谱图及其分峰结果

    Figure  4  Decomposition results of Ni 2p XPS(a), O 1s XPS(b), Al 2p XPS(c) and Si 2p XPS(d) spectra for the synthesized Y-xNi zeolites

    图  5  Y-xNi系列分子筛的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of the synthesized Y-xNi zeolites

    图  6  Y-xNi系列分子筛的Py-FTIR谱图

    Figure  6  Py-FTIR spectra of the synthesized Y-xNi zeolites

    图  7  Cat-xNi系列催化剂未硫化NiW催化剂的H2-TPR谱图

    Figure  7  H2-TPR profiles for the non-sulfided NiW catalysts

    图  8  Cat-xNi系列硫化态NiW催化剂的HRTEM照片

    Figure  8  HRTEM images of the sulfided NiW catalysts

    图  9  硫化NiW催化剂上WS2片晶的长度(a)和堆叠层数(b)的分布

    Figure  9  Distributions of layer length (a) and stacking number (b) of WS2 slabs on the sulfided NiW catalysts

    图  10  硫化NiW系列催化剂的W 4f XPS(a) 和Ni 2p XPS(b)谱图及其分峰结果

    Figure  10  Decomposition results of W 4f XPS(a) and Ni 2p XPS(b) spectra for the sulfided NiW series catalysts

    图  11  Cat-xNi系列硫化催化剂在不同反应温度下n-C16的转化率(a)、C8−C12的选择性(b)和收率(c)以及在360 ℃条件下重复三次实验后不同催化剂的C8−C12的收率(d)

    Figure  11  Conversion of n-C16 (a), selectivity of C8−C12 (b) and yield of C8−C12 (c) over the sulfided NiW catalysts at different reaction temperatures and yield of C8−C12 after three repetitive experiments at 360 ℃ for different sulfided Cat-xNi catalysts (d)

    表  1  不同Ni含量杂原子Y-xNi分子筛的理化性质

    Table  1  physicochemical of the synthesized Y-xNi zeolites with different Ni content

    Sample n(NiO/Al2O3) Relative crystallinityb/
    %
    Crystal cizec/
    nm
    SBET/
    (m2·g−1)
    vtotal/
    (cm3·g−1)
    Average pore diameter/
    nm
    theoretical actuala
    Y-0Ni 0 0 100 125 634.4 0.64 6.7
    Y-0.1Ni 0.1 0.09 102 136 612.1 0.62 6.4
    Y-0.2Ni 0.2 0.17 97 141 600.6 0.61 6.1
    Y-0.3Ni 0.3 0.26 92 146 588.4 0.59 5.9
    Y-0.4Ni 0.4 0.37 88 152 560.2 0.55 5.1
    a: Calculated from XRF results (test sample was HY-xNi zeolites after ion-exchange); b: Calculated from XRD results and Eq. (1); c: Statistically calculated from SEM image results.
    下载: 导出CSV

    表  2  Y-xNi系列分子筛上各物种分峰拟合

    Table  2  XPS deconvolution results of the synthesized Y-xNi zeolites

    Catalyst Si−O−Si/% Si−O−H/% Si−O−Al/% Ni−O/% Ni2+/% Ni3+/%
    Y-0Ni 39.6 28.1 32.3
    Y-0.1Ni 37.3 25.8 23.5 13.4 43.0 57.0
    Y-0.2Ni 38.1 29.1 17.6 15.2 46.7 53.3
    Y-0.3Ni 38.8 30.0 13.4 17.8 50.1 49.9
    Y-0.4Ni 39.1 30.8 10.9 19.2 55.4 44.6
    下载: 导出CSV

    表  3  Y-xNi系列分子筛的酸类型及酸量

    Table  3  Acidity of the synthesized Y-xNi zeolites

    Sample Acidity/(μmol·g−1)
    total acid sites (200 ℃) medium and strong acid sites (350 ℃) totald
    L B L+B B/L L B L+B B/L
    Y-0Ni 96 220 316 2.3 45 158 206 3.5 414
    Y-0.1Ni 125 233 358 1.9 63 164 227 2.6 452
    Y-0.2Ni 162 242 404 1.5 88 171 259 1.9 486
    Y-0.3Ni 193 254 447 1.3 107 182 289 1.7 522
    Y-0.4Ni 228 257 485 1.1 124 189 313 1.5 591
    d: Calculated from NH3-TPD results.
    下载: 导出CSV

    表  4  硫化催化剂上WS2的平均长度、堆垛层数、fw

    Table  4  Average length, stacking number, fw values of WS2 slabs of the sulfided catalysts

    Catalyst Length/nm Stacking number fw
    Cat-0Ni 3.65 3.54 0.34
    Cat-0.1Ni 3.61 3.55 0.35
    Cat-0.2Ni 3.56 3.58 0.36
    Cat-0.3Ni 3.48 3.58 0.37
    Cat-0.4Ni 3.65 3.47 0.32
    下载: 导出CSV

    表  5  硫化NiW系列催化剂上各物种分峰拟合结果

    Table  5  XPS deconvolution results of the sulfide NiW series catalysts

    Catalyst WS2/% WOxSy/% WO3/% Nisulfidation/% NiWS/% NixSy/% NiO/%
    Cat-0Ni 68.1 10.2 21.7 70.1 58.6 11.5 32.9
    Cat-0.1Ni 68.7 11.4 19.9 68.3 59.1 9.2 31.7
    Cat-0.2Ni 69.0 11.8 19.2 69.5 59.7 9.8 30.5
    Cat-0.3Ni 69.2 12.1 18.7 70.2 60.8 9.4 29.8
    Cat-0.4Ni 51.8 9.8 38.4 63.6 52.9 10.7 36.4
    下载: 导出CSV

    表  6  360 ℃下五种催化剂的n-C16加氢裂化活性数据

    Table  6  Hydrocracking results of n-C16 on five catalysts at 360 ℃

    Catalyst ka/(mol·g–1·h−1) TOFa,b/h−1 n-C16 conversion/% C8−C12 selectivity/% C8−C12 yield/%
    Cat-0Ni 1.09×10−2 25.79 65.2 88.9 58.1
    Cat-0.1Ni 1.22×10−2 27.32 71.3 86.6 61.7
    Cat-0.2Ni 1.31×10−2 28.05 75.1 86.0 64.6
    Cat-0.3Ni 1.44×10−2 29.44 76.2 75.4 57.5
    Cat-0.4Ni 1.68×10−2 38.19 81.0 68.9 55.8
    a: Changing the LHSV for n-C16 conversion of about 30%, b: The number of n-C16 molecules converted per hour per mole of W atoms.
    下载: 导出CSV
  • [1] BROWNING B E, PITAULT I, COUENNE F, et al. Effects of bifunctional catalyst geometry on vacuum gas oil hydrocracking conversion and selectivity for middle distillate[J]. Ind Eng Chem Res,2018,57(49):16579−16592. doi: 10.1021/acs.iecr.8b03003
    [2] LABABIDI H M S, CHEDADEH D, RIAZI M R, et al. Prediction of product quality for catalytic hydrocracking of vacuum gas oil[J]. Fuel,2011,90(2):719−727. doi: 10.1016/j.fuel.2010.09.046
    [3] DING L, SITEPU H, AL-BOGAMI S A, et al. Effect of zeolite-Y modification on crude-oil direct hydrocracking[J]. ACS Omega,2021,6(43):28654−28662. doi: 10.1021/acsomega.1c03029
    [4] SAHU R, SONG B J, IM J S, et al. A review of recent advances in catalytic hydrocracking of heavy residues[J]. J Ind Eng Chem,2015,27:12−24. doi: 10.1016/j.jiec.2015.01.011
    [5] FRANCIS J, GUILLON E, BATS N, et al. Design of improved hydrocracking catalysts by increasing the proximity between acid and metallic sites[J]. Appl Catal A: Gen,2011,409−410:140−147. doi: 10.1016/j.apcata.2011.09.040
    [6] WANG W, LIU C J, WU W. Bifunctional catalysts for the hydroisomerization of n-alkanes: The effects of metal-acid balance and textural structure[J]. Catal Sci Technol,2019,9(16):4162−4187. doi: 10.1039/C9CY00499H
    [7] LI D, NISHIJIMA A, MORRIS D E, et al. Activity and structure of hydrotreating Ni, Mo, and Ni-Mo sulfide catalysts supported on γ-Al2O3-USY zeolite[J]. J Catal,1999,188(1):111−124. doi: 10.1006/jcat.1999.2663
    [8] RANA M S, ANCHEYTA J, MAITY S K, et al. Heavy crude oil hydroprocessing: A zeolite-based CoMo catalyst and its spent catalyst characterization[J]. Catal Today,2008,130(2):411−420.
    [9] CUI Q, WANG S, WEI Q, et al. Synthesis and characterization of Zr incorporated small crystal size Y zeolite supported NiW catalysts for hydrocracking of vacuum gas oil[J]. Fuel,2019,237:597−605. doi: 10.1016/j.fuel.2018.10.040
    [10] BATALHA N, PINARD L, BOUCHY C, et al. n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites[J]. J Catal,2013,307:122−131. doi: 10.1016/j.jcat.2013.07.014
    [11] DING L, ZHENG Y, YANG H, et al. LCO hydrotreating with Mo-Ni and W-Ni supported on nano- and micro-sized zeolite beta[J]. Appl Catal A: Gen,2009,353(1):17−23. doi: 10.1016/j.apcata.2008.10.023
    [12] 黄坚, 李先锋, 谢军, 等. 离子交换法改性的NaY分子筛对吸附含硫VOCs的性能提升[J]. 环境工程学报,2022,16(10):3335−3345. doi: 10.12030/j.cjee.202204053

    HUANG Jian, LI Xianfeng, XIE Jun, et al. Improvement of the adsorption performance of sulfur-containing VOCs by NaY zeolite modified by ion exchange method[J]. Chin J Environ Eng,2022,16(10):3335−3345. doi: 10.12030/j.cjee.202204053
    [13] GU D, WANG H, LI Z, et al. Green synthesis of anthraquinone by one-pot method with Ni-modified Hβ zeolite[J]. Mol Catal,2023,538:112969. doi: 10.1016/j.mcat.2023.112969
    [14] JABŁOŃSKA M, KRÓL A, KUKULSKA-ZAJAC E, et al. Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen[J]. J Catal,2014,316:36−46. doi: 10.1016/j.jcat.2014.04.022
    [15] VIEIRA L H, CARVALHO K T, URQUIETA-GONZÁLEZ E A, et al. Effects of crystal size, acidity, and synthesis procedure on the catalytic performance of gallium and aluminum MFI zeolites in glycerol dehydration[J]. J Mol Catal A: Chem , 2016, 422 : 148−157.
    [16] ZHOU W, LIU M, ZHOU Y, et al. 4, 6-Dimethyldibenzothiophene hydrodesulfurization on nickel-modified USY-supported NiMoS catalysts: effects of modification method[J]. Energy Fuels,2017,31(7):7445−7455. doi: 10.1021/acs.energyfuels.7b01113
    [17] LIN T J, MENG X, SHI L. Ni-exchanged Y-zeolite: An efficient heterogeneous catalyst for acetylene hydrocarboxylation[J]. Appl Catal A: Gen,2014,485:163−171. doi: 10.1016/j.apcata.2014.07.036
    [18] 于悦, 张佳, 吕忠武, 等. Ni改性HZSM-5催化剂对混合C4中异丁烯齐聚的影响[J]. 工业催化,2023,31(10):63−68. doi: 10.3969/j.issn.1008-1143.2023.10.009

    YU Yue, ZHANG Jia, LÜ Zhongwu, et al. Effect of Ni - modified HZSM-5 catalysts on oligomerization of isobutylene in mixed C4[J]. Ind Catal,2023,31(10):63−68. doi: 10.3969/j.issn.1008-1143.2023.10.009
    [19] CUI Q, ZHOU Y, WEI Q, et al. Performance of Zr-and P-modified USY-based catalyst in hydrocracking of vacuum gas oil[J]. Fuel Process Technol,2013,106:439−446. doi: 10.1016/j.fuproc.2012.09.010
    [20] WANG J, LIU P, BORONAT M, et al. Organic-Free synthesis of zeolite Y with high Si/Al ratios: Combined strategy of in situ hydroxyl radical assistance and post‐synthesis treatment[J]. Angew Chem,2020,132(39):17378−17381. doi: 10.1002/ange.202005715
    [21] TAYEB K B, LAMONIER C, LANCELOT C, et al. Study of the active phase of NiW hydrocracking sulfided catalysts obtained from an innovative heteropolyanion based preparation[J]. Catal Today,2010,150(3/4):207−212. doi: 10.1016/j.cattod.2009.07.094
    [22] ZHOU W, WEI Q, ZHOU Y, et al. Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes[J]. Appl Catal B: Environ,2018,238:212−224. doi: 10.1016/j.apcatb.2018.07.042
    [23] LI X, WANG A, EGOROVA M, et al. Kinetics of the HDS of 4, 6-dimethyldibenzothiophene and its hydrogenated intermediates over sulfided Mo and NiMo on γ-Al2O3[J]. J Catal,2007,250(2):283−293. doi: 10.1016/j.jcat.2007.06.005
    [24] CALEMMA V, PERATELLO S, PEREGO C. Hydroisomerization and hydrocracking of long chain n-alkanes on Pt/amorphous SiO2-Al2O3 catalyst[J]. Appl Catal A: Gen,2000,190(1/2):207−218. doi: 10.1016/S0926-860X(99)00292-6
    [25] MURAOKA K, SADA Y, SHIMOJIMA A, et al. Tracking the rearrangement of atomic configurations during the conversion of FAU zeolite to CHA zeolite[J]. Chem Sci,2019,10(37):8533−8540. doi: 10.1039/C9SC02773D
    [26] MENG B, REN S, LI Z, et al. A facile organic-free synthesis of high silica zeolite Y with small crystal in the presence of Co2+[J]. Microporous Mesoporous Mater,2021,323:111248. doi: 10.1016/j.micromeso.2021.111248
    [27] LIU S, REN J, ZHU S, et al. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. J Catal,2015,330:485−496. doi: 10.1016/j.jcat.2015.07.027
    [28] HUANG W, WEI Q, ZHOU Y, et al. Hydrotreating of diesel fuel over in-situ nickel modified Y zeolite supported Ni-Mo-S catalyst[J]. Catal Today,2023,407:135−145. doi: 10.1016/j.cattod.2022.02.002
    [29] WEI B, JIN L, WANG D, et al. Effect of different acid-leached USY zeolites on in-situ catalytic upgrading of lignite tar[J]. Fuel,2020,266:117089. doi: 10.1016/j.fuel.2020.117089
    [30] CHOO M-Y, JUAN J C, OI L E, et al. The role of nanosized zeolite Y in the H2-free catalytic deoxygenation of triolein[J]. Catal Sci Technol,2019,9(3):772−782. doi: 10.1039/C8CY01877D
    [31] LV P, YAN L, LIU Y, et al. Catalytic conversion of coal pyrolysis vapors to light aromatics over hierarchical Y-type zeolites[J]. J Energy Inst,2020,93(4):1354−1363. doi: 10.1016/j.joei.2019.12.005
    [32] NG E-P, NG D T-L, AWALA H, et al. Microwave synthesis of colloidal stable AlPO-5 nanocrystals with high water adsorption capacity and unique morphology[J]. Mater Lett,2014,132:126−129. doi: 10.1016/j.matlet.2014.06.022
    [33] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure Appl Chem,1985,57(4):603−619. doi: 10.1351/pac198557040603
    [34] VALLE B, PALOS R, BILBAO J, et al. Role of zeolite properties in bio-oil deoxygenation and hydrocarbons production by catalytic cracking[J]. Fuel Process Technol,2022,227:107130.
    [35] PARLITZ B, SCHREIER E, ZUBOWA H, et al. Isomerization of n-heptane over Pd-loaded silico-alumino-phosphate molecular sieves[J]. J Catal,1995,155(1):1−11. doi: 10.1006/jcat.1995.1182
    [36] ALSOBAAI A, ZAKARIA R, HAMEED B. Gas oil hydrocracking on NiW/USY catalyst: Effect of tungsten and nickel loading[J]. Chem Eng J,2007,132(1/3):77−83. doi: 10.1016/j.cej.2007.01.021
    [37] 祖运, 秦玉才, 高雄厚, 等. 催化裂化条件下噻吩与改性Y分子筛的作用机制[J]. 燃料化学学报,2015,43(7):862−869.

    ZU Yun, QIN Yucai, GAO Xionghou, et al. Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J]. J Fuel Chem Technol,2015,43(7):862−869.
    [38] MOSQUEDA-JIMÉNEZ B, JENTYS A, SESHAN K, et al. Reduction of nitric oxide by propene and propane on Ni-exchanged mordenite[J]. Appl Catal B: Environ,2003,43(2):105−115. doi: 10.1016/S0926-3373(02)00280-1
    [39] SAAB R, POLYCHRONOPOULOU K, ANJUM D H, et al. Carbon nanostructure/zeolite Y composites as supports for monometallic and bimetallic hydrocracking catalysts[J]. Nanomaterials,2022,12(18):3246. doi: 10.3390/nano12183246
    [40] LU K, JIN F, WU G, et al. The synergetic effect of acid and nickel sites on bifunctional MWW zeolite catalysts for ethylene oligomerization and aromatization[J]. Sustainable Energy Fuels,2019,3(12):3569−3581. doi: 10.1039/C9SE00771G
    [41] PIETERSE J A, SESHAN K, DOMOKOS L, et al. On the accessibility of acid sites in ferrierite for pyridine[J]. J Catal,1999,187(2):518−520. doi: 10.1006/jcat.1999.2629
    [42] EMEIS C. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141(2):347−354. doi: 10.1006/jcat.1993.1145
    [43] MIRODATOS C, BARTHOMEUF D. Superacid sites in zeolites[J]. J Chem Soc, Chem Commun,1981,(2):39−40. doi: 10.1039/c39810000039
    [44] LI S, ZHENG A, SU Y, et al. Brønsted/Lewis acid synergy in dealuminated HY zeolite: A combined solid-state NMR and theoretical calculation study[J]. J Am Chem Soc,2007,129(36):11161−11171. doi: 10.1021/ja072767y
    [45] WANG Q, GIANNETTO G, GUISNET M. Dealumination of zeolites III. Effect of extra-framework aluminum species on the activity, selectivity, and stability of Y zeolites in n-heptane cracking[J]. J Catal,1991,130(2):471−482. doi: 10.1016/0021-9517(91)90129-R
    [46] GUO F, LI J, LI W, et al. Quinoline hydrodenitrogenation over NiW/Al-MCM-41 catalysts with different al contents[J]. Russ J Appl Chem,2017,90(12):2055−2063. doi: 10.1134/S1070427217120242
    [47] KOSTYNIUK A, KEY D, MDLELENI M. 1-hexene isomerization over bimetallic M-Mo-ZSM-5 (M: Fe, Co, Ni) zeolite catalysts: Effects of transition metals addition on the catalytic performance[J]. J Energy Inst,2020,93(2):552−564. doi: 10.1016/j.joei.2019.06.009
    [48] DE LEÓN J D, PICQUART M, VILLARROEL M, et al. Effect of gallium as an additive in hydrodesulfurization WS2/γ-Al2O3 catalysts[J]. J Mol. Catal A: Chem , 2010, 323(1-2): 1-6.
    [49] ZHOU W, ZHOU Y, WEI Q, et al. Continuous synthesis of mesoporous Y zeolites from normal inorganic aluminosilicates and their high adsorption capacity for dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT)[J]. Chem Eng J,2017,330:605−615. doi: 10.1016/j.cej.2017.08.005
    [50] TAYEB K B, LAMONIER C, LANCELOT C, et al. Active phase genesis of NiW hydrocracking catalysts based on nickel salt heteropolytungstate: Comparison with reference catalyst[J]. Appl Catal B: Environ,2012,126:55−63. doi: 10.1016/j.apcatb.2012.06.025
    [51] ALSALME A, ALZAQRI N, ALSALEH A, et al. Efficient Ni-Mo hydrodesulfurization catalyst prepared through Keggin polyoxometalate[J]. Appl Catal B: Environ,2016,182:102−108. doi: 10.1016/j.apcatb.2015.09.018
    [52] HUR Y G, LEE D-W, LEE K-Y J F. Hydrocracking of vacuum residue using NiWS (x) dispersed catalysts[J]. Fuel,2016,185:794−803. doi: 10.1016/j.fuel.2016.08.027
    [53] CORTES J C, RODRIGUEZ C, MOLINA R, et al. Hydrocracking of 1-methylnaphtalene (1MN) over modified clays-supported NiMoS and NiWS catalyst[J]. Fuel,2021,295:120612. doi: 10.1016/j.fuel.2021.120612
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  18
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-15
  • 修回日期:  2024-01-27
  • 录用日期:  2024-01-31
  • 网络出版日期:  2024-03-09

目录

    /

    返回文章
    返回