留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ce改性CuZnAl催化剂上仲丁醇脱氢制备甲乙酮

李英 马会霞 周峰 苑兴洲 张磊 张健

李英, 马会霞, 周峰, 苑兴洲, 张磊, 张健. Ce改性CuZnAl催化剂上仲丁醇脱氢制备甲乙酮[J]. 燃料化学学报(中英文), 2021, 49(1): 88-96. doi: 10.19906/j.cnki.JFCT.2021005
引用本文: 李英, 马会霞, 周峰, 苑兴洲, 张磊, 张健. Ce改性CuZnAl催化剂上仲丁醇脱氢制备甲乙酮[J]. 燃料化学学报(中英文), 2021, 49(1): 88-96. doi: 10.19906/j.cnki.JFCT.2021005
LI Ying, MA Hui-xia, ZHOU Feng, YUAN Xing-zhou, ZHANG Lei, ZHANG Jian. Performance of Ce-modified CuZnAl catalyst in the dehydrogenation of sec-butanol to methyl ethyl ketone[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 88-96. doi: 10.19906/j.cnki.JFCT.2021005
Citation: LI Ying, MA Hui-xia, ZHOU Feng, YUAN Xing-zhou, ZHANG Lei, ZHANG Jian. Performance of Ce-modified CuZnAl catalyst in the dehydrogenation of sec-butanol to methyl ethyl ketone[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 88-96. doi: 10.19906/j.cnki.JFCT.2021005

Ce改性CuZnAl催化剂上仲丁醇脱氢制备甲乙酮

doi: 10.19906/j.cnki.JFCT.2021005
详细信息
    通讯作者:

    E-mail: zhangjian_lnpu@163.com

  • 中图分类号: O643

Performance of Ce-modified CuZnAl catalyst in the dehydrogenation of sec-butanol to methyl ethyl ketone

  • 摘要: 采用共沉淀法制备了CuZnAl催化剂,并通过浸渍法将不同含量Ce引入到CuZnAl催化剂中,将其用于仲丁醇(SBA)脱氢制甲乙酮(MEK),研究了Ce改性对其催化性能的影响。结果表明,Ce的引入可以促使CuZnAl催化剂中Zn物种和Al物种发生反应,生成尖晶石(CuAl2O4)结构,有利于提高其催化稳定性;同时引入Ce能降低催化剂晶粒尺寸、提高CuO和ZnO的分散度,并使催化剂中Cu2+含量提高、还原温度降低、还原后催化剂中活性组分Cu0含量增加。Ce改性后的8%-Ce-CuZnAl催化剂对仲丁醇脱氢具有良好的活性,在240 °C、质量空速为5 h−1的条件下,SBA转化率达91.4%,MEK收率为87.74%;而且在100 h内催化活性稳定,SBA转化率保持在92%左右、MEK收率保持在88%左右。
  • 图  1  CuZnAl基体和不同Ce含量Ce-CuZnAl催化剂的XRD谱图

    Figure  1  XRD patterns of the CuZnAl matrix and Ce-CuZnAl catalysts with different Ce contents

    图  2  CuZnAl催化剂和Ce-CuZnAl催化剂的H2-TPR谱图

    Figure  2  H2-TPR profiles of the CuZnAl and 8%-Ce-CuZnAl catalysts

    图  3  CuZnAl和Ce-CuZnAl催化剂N2吸附-脱附等温线

    Figure  3  N2 adsorption-desorption isotherms of the CuZnAl and Ce-CuZnAl catalysts

    图  4  CuZnAl和Ce-CuZnAl催化剂的XPS谱图

    Figure  4  XPS spectra of the CuZnAl and Ce-CuZnAl catalysts

    图  5  不同Ce含量的Ce-CuZnAl催化剂催化SBA脱氢制MEK的性能曲线

    Figure  5  Performance of the Ce-CuZnAl catalysts with different Ce contents in the dehydrogenation of SBA to MEKa: MEK selectivity; b: SBA conversion; c: MEK yield reaction conditions: atmospheric pressure, 240 °C, LHSV = 5 h−1

    图  6  不同温度对SBA脱氢制MEK的影响柱状图

    Figure  6  Influence of reaction temperature on the dehydrogenation of SBA to MEK reaction conditions: atmospheric pressure, LHSV = 5 h−1

    图  7  不同质量空速对SBA脱氢制MEK的影响

    Figure  7  Influence of mass space velocity on the dehydrogenation of SBA to MEK a: MEK selectivity; b: SBA conversion; c: MEK yield reaction conditions: atmospheric pressure, 240 °C, LHSV = 2.5–15 h−1

    图  8  SBA脱氢制MEK的稳定性

    Figure  8  Stability of the 8%-Ce-CuZnAl catalyst in the dehydrogenation of SBA to MEK a: MEK selectivity; b: SBA conversion; c: MEK yield reaction conditions: atmospheric presuure, 240 °C, LHSV = 5 h−1

    表  1  CuZnAl and 8%-Ce-CuZnAl催化剂的结构参数

    Table  1  Structural parameters of CuZnAl and 8%-Ce-CuZnAl catalysts

    SamplePore diameter
    d/nm
    Pore volume
    v/(cm3·g−1)
    ABET/
    (m2·g−1)
    CuZnAl70.20066
    8%-Ce-CuZnAl120.24179
    下载: 导出CSV

    表  2  CuZnAl和Ce-CuZnAl催化剂的表面元素组成

    Table  2  Surface element composition of the CuZnAl and Ce-CuZnAl catalysts

    CatalystElement composition w/%
    CuZnAl
    CuZnAl7.656.3223.11
    8%-Ce-CuZnAl7.125.8622.46
    下载: 导出CSV
  • [1] FANG D R, REN W Z, LIU Z G, XU X F, XU L, LU H Y, LIAO W P, ZHANG H M. Synthesis and applications of mesoporous Cu-Zn-Al2O3 catalyst for dehydrogenation of 2-butanol[J]. J Nat Gas Chem,2009,18(2):179−182. doi: 10.1016/S1003-9953(08)60099-7
    [2] VEERESHGOUDAV S, PANDA P K. Electrospinning of cellulose acetate nanofiber membrane using methyl ethyl ketone and N, N-Dimethylacetamide as solvents[J]. Mater Chem Phys,2020,240(15):122147−122155.
    [3] GERAVAND E, SHARIATINIA Z, YARIPOUR F, SAHEBDELFAR S. Copper-based nanocatalysts for 2-butanol dehydrogenation: screening and optimization of preparation parameters by response surface methodology[J]. Korean J Chem Eng,2015,32(12):2418−2428. doi: 10.1007/s11814-015-0087-x
    [4] SONG D, YOON Y G, LEE C J. Conceptual design for the recovery of 1,3-butadiene and methyl ethyl ketone via a 2,3-Butanediol-dehydration process[J]. Chem Eng Res Des,2017,123:268−276. doi: 10.1016/j.cherd.2017.05.019
    [5] 李玉芳, 伍小明. 甲乙酮生产技术及国内外市场分析[J]. 上海化工,2012,37(4):32−37. doi: 10.3969/j.issn.1004-017X.2012.04.013

    LI Yu-fang, WU Xiao-ming. Methyl ethyl ketone production technology and analysis of domestic and foreign markets[J]. Shanghai Chem Ind,2012,37(4):32−37. doi: 10.3969/j.issn.1004-017X.2012.04.013
    [6] ODYAKOV V F, ZHIZHINA E G. Kinetics and mechanism of the homogeneous oxidation of n-butenes to methyl ethyl ketone in a solution of Mo-V-phosphoric heteropoly acid in the presence of palladium pyridine-2,6-dicarboxylate[J]. Kinet Catal,2011,52(6):828−834. doi: 10.1134/S0023158411060164
    [7] LIU Z H, HUO W Z, MA H, QIAO K. Development and commercial application of MEK production technology[J]. Chin J Chem Eng,2006,14(5):676−684. doi: 10.1016/S1004-9541(06)60134-1
    [8] 付朋, 李永刚, 宁春利. Cu/ZnO/Al2O3催化剂用于醋酸仲丁酯加氢制备仲丁醇联产乙醇[J]. 工业催化,2017,25(4):68−73. doi: 10.3969/j.issn.1008-1143.2017.04.012

    FU Peng, LI Yong-gang, NING Chun-li. Cu/ZnO/Al2O3 catalyst for hydrogenation of sec-butyl acetate to sec-butanol for ethanol production[J]. Ind Catal,2017,25(4):68−73. doi: 10.3969/j.issn.1008-1143.2017.04.012
    [9] FANG D, LIU Z M, MENG S H, WANG L G, XU L, WANG H. Influence of aging time on the properties of precursors of CuO/ZnO catalysts for methanol synthesis[J]. J Nat Gas Chem,2005,14:107−114.
    [10] LI J L, INUI T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminium oxides, precipitated at different pHs and temperatures[J]. Appl Catal A: Gen,1996,137:105−117. doi: 10.1016/0926-860X(95)00284-7
    [11] ZHU W C, WANG L X, LIU S Y, WANG Z L. Characterization and catalytic behavior of silica-supported copper catalysts prepared byimpregnation and ion-exchange methods[J]. React Kinet Catal Lett,2008,93(1):93−99. doi: 10.1007/s11144-008-5178-9
    [12] KEULER J N, LORENZEN L, MIACHON S. The dehydrogenation of 2-butanol over copper-based catalysts: Optimising catalyst composition and determining kinetic parameters[J]. Appl Catal A: Gen,2001,218(1):171−180.
    [13] MARCHIAJ, FIERRO J L G, SANTAMARIA J, MONZON A. Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst: A study of the activity evolution and reactivation of the catalyst[J]. Appl Catal A: Gen,1996,142:375−386. doi: 10.1016/0926-860X(96)00087-7
    [14] CRIVELLO M, PEREZ C, FERNANDEZ J, EIMER G, HERRERO E, CASUSCELLI S, ENRIQUE R C. Synthesis and characterization of Cr/Cu/Mg mixed oxides obtained from hydrotalcite-type compounds and their application in the dehydrogenation of isoamylic alcohol[J]. Appl Catal A: Gen,2007,317:11−19. doi: 10.1016/j.apcata.2006.08.035
    [15] 姜广申, 胡云峰, 蔡俊, 许鹏, 从亮, 方菲. 仲丁醇脱氢制甲乙酮的Cu-ZnO催化剂[J]. 化工进展,2013,32(2):352−358.

    JIANG Guang-shen, HU Yun-feng, CAI Jun, XU Peng, CHONG Liang, FANG Fei. Cu-ZnO catalyst for the dehydrogenation of sec-butanol to methyl ethyl ketone[J]. Chem Ind Eng Prog,2013,32(2):352−358.
    [16] SUN D, MISU T, TAMADA Y, SATO S. Advantages of using Cu/SiO2 catalyst for vapor-phase dehydrogenation of 1-decanol into decanal[J]. Appl Catal A: Gen,2019,582(25):117109.
    [17] 马依文, 包桂蓉, 王青青, 李法社. La改性Cu/Zn/Al催化剂的制备及其催化纤维素液化性能[J]. 化工进展,2016,35(1):179−187.

    MA Yi-wen, BAO Gui-rong, WANG Qing-qing, LI Fa-she. Preparation of La modified Cu/Zn/Al catalyst and its catalytic performance for cellulose liquefaction[J]. Chem Ind Eng Prog,2016,35(1):179−187.
    [18] TOYIR J, FIERRO J L G, HOMS N, PISCINA P R D L. Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: Influence of metallic precursors[J]. Appl Catal B: Environ,2001,34(4):255−266. doi: 10.1016/S0926-3373(01)00203-X
    [19] LI B X, HAO Y G, ZHANG B S, SHAO S K, HU L Y. A multifunctional noble-metal-free catalyst of CuO/TiO2 hybrid nanofibers[J]. Appl Catal A: Gen,2017,531(3):1−12.
    [20] 王爱丽, 贾星原, 卢志鹏, 殷恒波, 邵守言, 朱桂生. 稀土元素(La, Ce, Nd)改性Cu/SiO2催化甲醇脱氢制备甲酸甲酯[J]. 精细石油化工,2019,36(1):20−25. doi: 10.3969/j.issn.1003-9384.2019.01.005

    WANG Ai-li, JIA Xing-yuan, LU Zhi-peng, YIN Heng-bo, SHAO Shou-yan, ZHU Gui-sheng. Rare earth elements (La, Ce, Nd) modified Cu/SiO2 catalyzed dehydrogenation of methanol to methyl formate[J]. Special Petrochem,2019,36(1):20−25. doi: 10.3969/j.issn.1003-9384.2019.01.005
    [21] 雷艳秋. Pr和Sm改性的镍基和铜基催化剂在甲醇水蒸气重整制氢中的研究[D]. 昆明: 昆明理工大学, 2017.

    LEI Qiu-yan. Study on Pr and Sm modified nickel-based and copper-based catalysts for hydrogen production from methanol steam reforming[D]. Kunming: Kunming University of Science and Technology, 2017.
    [22] 杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭. 稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报,2018,46(2):179−188. doi: 10.3969/j.issn.0253-2409.2018.02.007

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare earth doping modification on the performance of Cu/ZnAl hydrotalcite derived catalysts for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol,2018,46(2):179−188. doi: 10.3969/j.issn.0253-2409.2018.02.007
    [23] 黄玉辉, 任国卿, 孙蛟, 王重庆, 陈晓荣, 梅华. 沉淀剂对CuZnAl催化剂糠醛气相加氢制糠醇选择性的影响[J]. 燃料化学学报,2016,44(6):726−731. doi: 10.3969/j.issn.0253-2409.2016.06.013

    HUANG Yu-hui, REN Guo-qing, SUN Jiao, WANG Chong-qing, CHEN Xiao-rong, MEI Hua. Effect of precipitant on the selectivity of CuZnAl catalyst for gas phase hydrogenation of furfural to furfuryl alcohol[J]. J Fuel Chem Technol,2016,44(6):726−731. doi: 10.3969/j.issn.0253-2409.2016.06.013
    [24] TAKEHIRA K. “Intelligent” reforming catalysts: Trace noble metal-doped Ni/Mg(Al)O derived from hydrotalcites[J]. J Nat Gas Chem,2009,3(18):237−259.
    [25] LIU G, BAO G R, WANG H, LUO J, HUI S, HUANG Y, MA Y W. Ce modified Cu/Zn/Al catalysts for direct liquefaction of microcrystalline cellulose in supercritical methanol[J]. Cellulose,2019,26(15):8291−8300. doi: 10.1007/s10570-019-02565-z
    [26] VELUS, SUZUKI K, OKAZAKI M, KAPOOR M P, OSAKI T, OHASHI F. Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: Catalyst characterization and performance evaluation[J]. J Catal,2000,194(2):373−384. doi: 10.1006/jcat.2000.2940
    [27] 许川, 马爱琼, 刘民生, 高云琴. 固相反应法合成锌铝尖晶石[J]. 硅酸盐通报,2012,31(2):455−463.

    XU Chuan, MA Ai-qiong, LIU Min-sheng, GAO Yun-qin. Synthesis of zinc aluminum spinel by solid state reaction method[J]. J Chin Cera Soc,2012,31(2):455−463.
    [28] 方书农, 姜明, 伏义路, 林培琰, 乔山, 谢亚宁. 不同焙烧温度对Cu/γ-Al2O3催化剂铜物种结构的影响[J]. 物理化学学报,1994,10(7):623−627. doi: 10.3866/PKU.WHXB19940709

    FANG Shu-nong, JIANG Ming, FU Yi-lu, LIN Pei-yan, QIAO Shan, XIE Ya-ning. The effect of different calcination temperatures on the copper species structure of Cu/γ-Al2O3 catalyst[J]. Acta Phys Chim Sin,1994,10(7):623−627. doi: 10.3866/PKU.WHXB19940709
    [29] MASOUD S N, FATEMEH D, MASOUD F K. Bright blue pigment CoAl2O4 nanocrystals prepared by modified sol-gel method[J]. J Sol-Gel Sci Technol,2009,52(3):321−327. doi: 10.1007/s10971-009-2050-y
    [30] 刘文艳, 王华, 高文桂, 张明宇, 张逢杰. 不同助剂对合成甲醇工业催化剂二氧化碳加氢性能的影响[J]. 材料导报,2012,26(3):96−99. doi: 10.3969/j.issn.1005-023X.2012.03.019

    LIU Wen-yan, WANG Hua, GAO Wen-gui, ZHANG Feng-jie. Effects of different promoters on the performance of industrial catalysts for the hydrogenation of carbon dioxide in methanol synthesis[J]. Mater Rev,2012,26(3):96−99. doi: 10.3969/j.issn.1005-023X.2012.03.019
    [31] GAO W G, WANG H, WANG Y H, GUO W, JIA M R. Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts[J]. J Rare Earth,2013,31(5):470−476. doi: 10.1016/S1002-0721(12)60305-6
    [32] SHEN M Q, XU L L, WANG J Q, LI C X, WANG W L, WANG J, ZHAI Y P. Effect of synthesis methods on activity of V2O5/CeO2/WO3-TiO2 catalyst for selective catalytic reduction of NOx with NH3[J]. J Rare Earth,2016,34(3):259−267. doi: 10.1016/S1002-0721(16)60023-6
    [33] LI M M J, ZENG Z Y, LIAO F L, HONG X L, TSANG S C E. Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts[J]. J Catal,2016,343:157−167. doi: 10.1016/j.jcat.2016.03.020
    [34] BYOUNG K K, DAE S P, YANG S Y, JONGHEOP Y. Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol-gel method for the hydrogenolysis of glycerol[J]. Catal Commun,2012,24:90−95. doi: 10.1016/j.catcom.2012.03.029
    [35] 覃发玠, 刘雅杰, 庆绍军, 侯晓宁, 高志贤. 甲醇制氢铜铝尖晶石缓释催化剂的研究-不同铜源合成的影响[J]. 燃料化学学报,2017,45(12):1481−1488. doi: 10.3969/j.issn.0253-2409.2017.12.010

    QIN Fa-jie, LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Study on the slow-release copper-aluminum spinel catalyst for the production of hydrogen from methanol-the influence of the synthesis of different copper sources[J]. J Fuel Chem Technol,2017,45(12):1481−1488. doi: 10.3969/j.issn.0253-2409.2017.12.010
    [36] AUNBAMRUNG P, WONGKAEW A. Effect of Cu loading tocatalytic selective CO oxidation of CuO/CeO-CoO[J]. Adv Chem Eng Sci,2013,3(4):15−19.
    [37] 李忠, 牛燕燕, 郑华燕, 付廷俊, 朱琼芳, 阴丽华. 表面改性对Cu/活性炭催化剂表面 Cu物种和催化活性的影响[J]. 无机化学学报,2011,27(7):1277−1284.

    LI Zhong, NIU Yan-yan, ZHENG Hua-yan, FU Ting-jun, ZHU Qiong-fang, YIN Li-hua. Effect of surface modification on Cu species and catalytic activity of Cu/activated carbon catalyst[J]. Chin J Inorg Chem,2011,27(7):1277−1284.
    [38] CHENG S Y, KOU J W, GAO Z H, HUANG W. Preparation of complexant-modified Cu/ZnO/Al2O3catalysts via hydrotalcite-like precursors and its highly efficient application in direct synthesis of isobutanol and ethanol from syngas[J]. Appl Catal A: Gen,2018,556:113−120. doi: 10.1016/j.apcata.2018.02.027
    [39] FRANCO P, RICCARDO P. Catalytic behavior and surface chemistry of Copper/ZnO/Al2O3 catalysts for the decomposition of 2-propanol[J]. J Catal,1992,136:86−95. doi: 10.1016/0021-9517(92)90108-T
    [40] 王冬蕾. 微波碳热还原法制备Cu/AC催化合成碳酸二甲酯性能研究[D]. 太原: 太原理工大学, 2014.

    WANG Dong-lei. Preparation of Cu/AC by microwave carbothermal reduction method for catalytic synthesis of dimethyl carbonate[D]. Taiyuan: Taiyuan University of Science and Technology, 2014.
    [41] GAO P, LI F, ZHAN H, ZHAO N, XIAO F K, WEI W, ZHONG L S, WANG H, SUN Y H. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal,2013,298:51−60. doi: 10.1016/j.jcat.2012.10.030
    [42] HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy,2017,42(15):9930−9937. doi: 10.1016/j.ijhydene.2017.01.229
    [43] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO 2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy,2013,38(11):4397−4406. doi: 10.1016/j.ijhydene.2013.01.053
    [44] LI Y, FENG J T, LI D Q. Preparation and characterization of spherical mesoporous ZrO2-Al2O3 composites with high thermal stability[J]. Sci Chain Chem,2011,54(7):1032−1038. doi: 10.1007/s11426-011-4282-2
    [45] YAP M H, FOW K L, CHEN G Z. Synthesis and applications of MOF-derived porous nanostructures[J]. Green Energy Environ,2017,2(3):218−245. doi: 10.1016/j.gee.2017.05.003
    [46] AGARWAL V, PATEL S, PANT K K. H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: Transient deactivation kinetics modeling[J]. Appl Catal A: Gen,2005,279(1):155−164.
    [47] 张磊, 雷俊腾, 田园, 胡鑫, 白金, 刘丹, 杨义, 潘立卫. 前驱体和沉淀剂浓度对CuO/ ZnO/CeO2-ZrO2甲醇水蒸气重整制氢催化剂性能的影响[J]. 燃料化学学报,2015,43(11):1366−1374. doi: 10.3969/j.issn.0253-2409.2015.11.012

    ZHANG Lei, LEI Jun-teng, TIAN Yuan, HU Xin, BAI Jin, LIU Dan, YANG Yi, PAN Li-wei. Effectof precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming[J]. J Fuel Chem Technol,2015,43(11):1366−1374. doi: 10.3969/j.issn.0253-2409.2015.11.012
    [48] GAO Z H, LI S S, TIAN H H, DONG W B, LIU Y, JIA L, HUANG W. Synthesis of ethanol from syngas over CuZnAl catalysts with different Cu/Zn/Al molar ratios in polyethylene glycol 600 medium[J]. React Kinet Mech Catal,2017,122(2):1117−1127. doi: 10.1007/s11144-017-1270-3
    [49] DAS D, LLORCA J, DOMINGUEZ M, COLUSSI S, TROVARELLI A, GAYEN A. Methanol steam reforming behavior of copperimpregnated over CeO2-ZrO2 derived from a surfactant assisted coprecipitation route[J]. Int J Hydrogen Energy,2015,40(33):10463−10479. doi: 10.1016/j.ijhydene.2015.06.130
    [50] SHI L M, GAO C L, GUO F H, WANG Y J, ZHANG T B. Catalytic performance of Zr-doped CuO-CeO2 oxides for CO selective oxidation in H2-rich stream[J]. J Rare Earth,2019,37:720−725. doi: 10.1016/j.jre.2019.01.003
    [51] 张国强, 郭天玉, 郑华艳, 李忠. 焙烧温度对CuCe/Ac催化剂甲醇氧化羰基化性能的影响[J]. 燃料化学学报,2016,44(6):674−679. doi: 10.3969/j.issn.0253-2409.2016.06.006

    ZHANG Guo-qiang, GUO Tian-yu, ZHENG Hua-yan, LI Zhong. Effect of calcination temperature on the performance of CuCe/Ac catalyst for methanol oxidative carbonylation[J]. J Fuel Chem Technol,2016,44(6):674−679. doi: 10.3969/j.issn.0253-2409.2016.06.006
    [52] 余启炎, 郝雪松, 杨晓红, 顾申, 闫丽梅, 石翠. 仲丁醇脱氢制甲乙酮催化剂的研究[J]. 石油化工,2005,34(9):818−821. doi: 10.3321/j.issn:1000-8144.2005.09.003

    YU Qi-yan, HAO Xue-song, YANG Xiao-hong, GU Shen, YAN Li-mei, SHI Cui. Study on the catalyst for the dehydrogenation of sec-butanol to methyl ethyl ketone[J]. Petrochem Technol,2005,34(9):818−821. doi: 10.3321/j.issn:1000-8144.2005.09.003
    [53] 何奋彪. 共沉淀法仲丁醇脱氢制甲乙酮催化剂的研究[J]. 上海化工,2011,36(2):12−14. doi: 10.3969/j.issn.1004-017X.2011.02.004

    HE Fen-biao. Study on the catalyst for the dehydrogenation of sec-butanol to methyl ethyl ketone by co-precipitation[J]. Shanghai Chem Ind,2011,36(2):12−14. doi: 10.3969/j.issn.1004-017X.2011.02.004
    [54] 迟德旭, 房德仁. 仲丁醇脱氢催化剂性能试验及工业应用[J]. 工业催化,2012,20(11):65−68. doi: 10.3969/j.issn.1008-1143.2012.11.015

    CHI De-xu, FANG De-ren. Performance test and industrial application of sec-butanol dehydrogenation catalyst[J]. Ind Catal,2012,20(11):65−68. doi: 10.3969/j.issn.1008-1143.2012.11.015
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  600
  • HTML全文浏览量:  232
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2020-10-01
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回