留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C5烃催化裂解过程中氢转移反应的研究

刘美佳 王刚 张忠东 田爱珍

刘美佳, 王刚, 张忠东, 田爱珍. C5烃催化裂解过程中氢转移反应的研究[J]. 燃料化学学报(中英文), 2021, 49(1): 104-112. doi: 10.19906/j.cnki.JFCT.2021006
引用本文: 刘美佳, 王刚, 张忠东, 田爱珍. C5烃催化裂解过程中氢转移反应的研究[J]. 燃料化学学报(中英文), 2021, 49(1): 104-112. doi: 10.19906/j.cnki.JFCT.2021006
LIU Mei-jia, WANG Gang, ZHANG Zhong-dong, TIAN Ai-zhen. Study on hydrogen transfer reaction in C5 hydrocarbons catalytic pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 104-112. doi: 10.19906/j.cnki.JFCT.2021006
Citation: LIU Mei-jia, WANG Gang, ZHANG Zhong-dong, TIAN Ai-zhen. Study on hydrogen transfer reaction in C5 hydrocarbons catalytic pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 104-112. doi: 10.19906/j.cnki.JFCT.2021006

C5烃催化裂解过程中氢转移反应的研究

doi: 10.19906/j.cnki.JFCT.2021006
基金项目: 中国石油天然气股份有限公司科技开发项目-炼油向化工转型升级技术研究开发(2019A-1809)与深度降低汽油烯烃的灵活催化裂化工艺技术(CCOC)开发及应用(KYWX-19-019)项目资助
详细信息
    通讯作者:

    E-mail: wanggang@cup.edu.cn

    zhangzhongdong@petrochina.com.cn

  • 中图分类号: TE621

Study on hydrogen transfer reaction in C5 hydrocarbons catalytic pyrolysis

Funds: The project was supported by Technology Development Project of China National Petroleum Corporation-Research and Development of Upgrading Technology for the Transformation of Oil Refining to Chemical Industry (2019A-1809) and Development and Application of Flexible Catal Cracking Gasoline Olefins Conversion (CCOC) (KYWX-19-019)
  • 摘要: 对C5烃(正戊烷、1-戊烯)的裂解反应产物进行分析,按照理想正碳离子和自由基反应机理,正戊烷和1-戊烯裂解生成低碳烯烃(C2H4+C3H6+C4H8)的摩尔选择性分别达到50%和100%。但是使用MFI-30分子筛,在650 ℃反应条件下,正戊烷和1-戊烯催化裂解生成低碳烯烃的摩尔选择性分别为23.41%和56.79%,说明分别有26.59%和43.21%的低碳烯烃发生了氢转移反应。进一步考察了不同类型分子筛和关键反应温度对C5烃催化裂解过程中氢转移反应的影响,研究发现,小孔结构、低酸密度的分子筛和较高反应温度,可以不同程度地抑制氢转移反应,提高低碳烯烃的选择性。在650 ℃条件下,当分子筛由大孔结构、高酸量的FAU更换为小孔结构、低酸量的MFI-120时,正戊烷和1-戊烯催化裂解的氢转移系数HTC分别减小96.86%和50.58%,焦炭选择性分别由11.91%和20.77%减小到0.75%和0.89%,低碳烯烃(C2H4+C3H6+C4H8)的选择性分别由14.25%和25.14%增加到46.28%和62.58%。
  • 图  1  微型固定床实验装置

    Figure  1  Micro fixed bed experiment apparatus

    图  2  正戊烷裂解反应机理

    Figure  2  Cracking reaction mechanism of n-pentane

    图  3  1-戊烯裂解反应机理

    Figure  3  Cracking reaction mechanism of 1-pentene

    图  4  C5烃在不同拓扑结构分子筛上催化裂解反应

    Figure  4  The catalytic pyrolysis reaction of C5 hydrocarbons on zeolites with different topologies

    图  5  C5烃在不同硅铝比及酸量分子筛上催化裂解反应

    Figure  5  Catalytic pyrolysis reaction of C5 hydrocarbons on zeolites with different ratios of silicon to aluminum and the acid content

    图  6  C5烃在不同反应温度下的催化裂解反应

    Figure  6  Catalytic pyrolysis reaction of C5 hydrocarbons at different reaction temperatures

    图  7  各类因素对C5烃催化裂解过程中氢转移系数HTC和低碳烯烃选择性的影响

    Figure  7  Influence of various factors on the hydrogen transfer coefficient HTC and the selectivity of light olefins during the catalytic cracking of C5 hydrocarbons

    表  1  不同类型分子筛的物化性质

    Table  1  Properties of different zeolites

    TopologySi/Al2Channel dimensionMaximum spherical
    diameter contained
    in zeolite[12]/nm
    SBET/
    (m2·g−1)
    vmicro/
    (cm3·g−1)
    Pore size/nmWeak acid/
    (mmol·g−1)
    Strong acid/
    (mmol·g−1)
    Total acid/
    (mmol·g−1)
    MFI3030.636397.6500.1420.5200.2140.2080.422
    MFI4030.636397.4110.1410.5200.1730.1890.362
    MFI12030.636397.5200.1410.5200.1160.1020.218
    FER2520.631401.6980.1420.5130.1490.2070.356
    FAU631.124793.4030.2720.7350.1270.2270.354
    下载: 导出CSV

    表  2  C5烃催化裂解条件下的产品分布

    Table  2  Product distribution of C5 hydrocarbons pyrolysis under catalytic conditions

    n-pentane thermal
    cracking
    1-pentene thermal
    cracking
    n-pentane catalytic
    pyrolysis
    1-pentene catalytic
    pyrolysis
    Conversion w/%8.8325.4997.4199.78
    Product yield w/%
    H20.030.031.261.37
    CH40.602.3611.3511.65
    C2H60.962.1816.008.42
    C2H41.303.279.4013.60
    C3H80.100.5124.7011.52
    C3H62.013.958.239.58
    C4H100.330.324.701.82
    C4H80.642.512.482.27
    1-C5H100.7974.510.440.22
    n-C5H1291.173.242.590.01
    Aromatics0.020.6813.6331.32
    Other components1.896.274.447.16
    Coke0.160.160.781.06
    下载: 导出CSV

    表  3  C5烃主要裂解产物的摩尔选择性(650 ℃,MFI-30分子筛,重时空速220 h−1

    Table  3  Molar selectivity of the main products of C5 hydrocarbons cracking (650 ℃, MFI-30 zeolite, weight hourly space velocity 220 h−1)

    Molar selectivity/%n-pentane1-pentene
    CH428.81
    C2H4+C3H6+C4H823.4156.79
    C2H6+C3H8+C4H1047.7843.21
    下载: 导出CSV

    表  4  C5烃在不同分子筛上的催化裂解(650 ℃)

    Table  4  The catalytic pyrolysis reaction of C5 hydrocarbons on different zeolites (650 ℃)

    Reactantn-pentane1-pentene
    ZeoliteFAUMFI-120FAUMFI-120
    HTC6.680.210.710.35
    Coke selectivity s/%11.910.7520.770.89
    Light olefins selectivity s/%14.2546.2825.1462.58
    下载: 导出CSV
  • [1] LIU Z Y, ZHANG Z D, YANG C H, GAO X H. Domestic technology developments on high-efficiency heavy oil conversion FCC catalysts’ industrialization[J]. Appl Petrochem Res,2015,5(4):269−275. doi: 10.1007/s13203-015-0133-y
    [2] 王刚, 孙静, 方东, 肖俊, 南杰, 高金森. 分子炼油为导向的催化裂化加工重质油策略[J]. 中国科学: 化学,2018,48(4):362−368. doi: 10.1360/N032017-00169

    WANG Gang, SUN Jing, FANG Dong, XIAO Jun, NAN Jie, GAO Jin-sen. Molecular-refining oriented strategy of catalytic cracking for processing heavy oil[J]. Sci Sin Chim,2018,48(4):362−368. doi: 10.1360/N032017-00169
    [3] LI C Y, YANG C H, SHAN H H. Maximizing propylene yield by two-stage riser catalytic cracking of heavy oil[J]. Ind Eng Chem Res,2007,46(14):4914−4920. doi: 10.1021/ie061420l
    [4] ZAMOSTNY P, BELOHLAV Z, STARKBAUMOVA L, PATERA J. Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products[J]. J Anal Appl Pyrolysis,2010,87(2):207−216.
    [5] 王为然, 张文斌, 王刚, 蓝兴英, 徐春明, 高金森. FCC汽油二次裂化增产丙烯过程中主要影响因素的研究[J]. 燃料化学学报,2009,31(1):67−72.

    WANG Wei-ran, ZHANG Wen-bin, WANG Gang, LAN Xing-ying, XU Chun-ming, GAO Jin-sen. Research on the main influencing factors in the process of FCC gasoline secondary cracking to increase propylene production[J]. J Fuel Chem Technol,2009,31(1):67−72.
    [6] 许友好, 崔守业, 汪燮卿. FCC汽油烯烃双分子裂化反应及其与双分子氢转移反应之比的研究[J]. 石油炼制与化工,2007,38(9):1−5. doi: 10.3969/j.issn.1005-2399.2007.09.001

    XU You-hao, CUI Shou-ye, WANG Xie-qing. Study on the bimolecular cracking reaction of FCC gasoline olefins and its ratio to bimolecular hydrogen transfer reaction[J]. Pet Process Petrochem,2007,38(9):1−5. doi: 10.3969/j.issn.1005-2399.2007.09.001
    [7] POTAPENKO O V, DORONIN V P, SOROKINA T P, KROL O V, LIKHOLOBOVET V A. A study of intermolecular hydrogen transfer from naphthenes to 1-hexene over zeolite catalysts[J]. Appl Catal A: Gen, 2016, 516, 153-159.
    [8] BORTNOVSKY O, SAZAMA P, WICHTERLOVA B. Cracking of pentenes to C2-C4 light olefins over zeolites and zeotypes[J]. Appl Catal A: Gen,2005,287(2):203−213. doi: 10.1016/j.apcata.2005.03.037
    [9] HOU X, QIU Y, ZHANG X W, LIU G Z. Analysis of reaction pathways forn-pentane cracking over zeolites to produce light olefins[J]. Chem Eng J,2016,307(1):372−381.
    [10] THIVASASITH A, MAIHOM T, PENGPANICH S, WATTANAKIT C. Nanocavity effects of various zeolite frameworks on n-pentane cracking to light olefins: Combination studies of DFT calculations and experiments[J]. Phys Chem Chem Phys,2019,21(40):22215−22223. doi: 10.1039/C9CP03871J
    [11] KUBO K, LIDA H, NAMBA S, LGARASHI A. Selective formation of light olefin by n-heptane cracking over HZSM-5 at high temperatures[J]. Microporous Mesoporous Mater,2012,149(1):126−133. doi: 10.1016/j.micromeso.2011.08.021
    [12] TREACY M M J, FOSTER M D. Packing sticky hard spheres into rigid zeolite frameworks[J]. Microporous Mesoporous Mater,2009,118(1/3):106−114. doi: 10.1016/j.micromeso.2008.08.039
    [13] HOU X, NI N, WANG Y, ZHU W J, QIU Y, DIAO Z H, LIU G Z, ZHANG X W. Roles of the free radical and carbenium ion mechanisms in pentane cracking to produce light olefins[J]. J Anal Appl Pyrolysis,2019,138:270−280.
    [14] ZHANG R, WANG Z X, LIU H Y, LIU Z C, LIU G L, MENG X H. Thermodynamic equilibrium distribution of light olefins in catalytic pyrolysis[J]. Appl Catal A: Gen,2016,522:165−171. doi: 10.1016/j.apcata.2016.05.009
    [15] HAAG W, DESSAU R. Duality of mechanism for acid-catalyzed paraffin cracking[C]// Proceedings of the 8th International Congress on Catalysis, 1984.
    [16] CORMA A, MONTON J B, ORCHILLES A V. Cracking of n-heptane on a HZSM-5 zeolite. The influence of acidity and pore structure[J]. Appl Catal,1985,16(1):59–74.
    [17] ZHANG Y, ZHAO R X, SANCHEZSANCHEZ M, HALLER G L, HU J Z, BERMEJODEVAL R, LIU Y, LERCHER J A. Promotion of protolytic pentane conversion on H-MFI zeolite by proximity of extra-framework aluminum oxide and Brønsted acid sites[J]. J Catal,2019,370:424−433. doi: 10.1016/j.jcat.2019.01.006
    [18] 罗渝然. 《化学键能数据手册》[J]. 科学通报,2005,50(8):759−759. doi: 10.3321/j.issn:0023-074X.2005.08.021

    LUO Yu-ran. "Chemical Bond Energy Data Handbook"[J]. Scientia,2005,50(8):759−759. doi: 10.3321/j.issn:0023-074X.2005.08.021
    [19] HUANG X, AIHEMAITIJIANG D, XIAO W D. Reaction pathway and kinetics of C3–C7 olefin transformation over high-silicon HZSM-5 zeolite at 400–490 °C[J]. Chem Eng J,2015,280(15):222−232.
    [20] CNUDDE P, DE WISPELAERE K, VAN D M J, WAROQUIER M, SPEYBROECK V V. Effect of temperature and branching on the nature and stability of alkene cracking intermediates in H-ZSM-5[J]. J Catal,2017,345:53−69. doi: 10.1016/j.jcat.2016.11.010
    [21] 朱华元, 何鸣元, 张信, 宋家庆. 正己烷在几种不同分子筛上的氢转移反应[J]. 石油炼制与化工,2001,(9):39−42. doi: 10.3969/j.issn.1005-2399.2001.09.011

    ZHU Hua-yuan, HE Ming-yuan, ZHANG Xin, SONG Jia-qing. Hydrogen transfer reaction of n-hexane on several different molecular sieves[J]. Pet Process Petrochem,2001,(9):39−42. doi: 10.3969/j.issn.1005-2399.2001.09.011
    [22] 许友好. 氢转移反应在烯烃转化中的作用探讨[J]. 石油炼制与化工,2002,(1):38−41. doi: 10.3969/j.issn.1005-2399.2002.01.009

    XU You-hao. Discussion on the role of hydrogen transfer reaction in olefin conversion[J]. Pet Process Petrochem,2002,(1):38−41. doi: 10.3969/j.issn.1005-2399.2002.01.009
    [23] 朱向学, 宋月芹, 李宏冰, 刘盛林, 孙新德, 徐龙伢. 丁烯催化裂解制丙烯/乙烯反应的热力学研究[J]. 催化学报,2005,26(2):22−28.

    ZHU Xiang-xue, SONG Yue-qin, LI Hong-bing, LIU Sheng-lin, SUN Xin-de, XU Long-ya. Thermodynamic study on the catalytic cracking of butene to propylene/ethylene[J]. Chin J Catal,2005,26(2):22−28.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  586
  • HTML全文浏览量:  176
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2020-09-30
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回