留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属改性分子筛催化热解木质素制取轻质芳烃

黄明 朱亮 马中青 周秉亮 刘晓欢 叶结旺 赵超

黄明, 朱亮, 马中青, 周秉亮, 刘晓欢, 叶结旺, 赵超. 金属改性分子筛催化热解木质素制取轻质芳烃[J]. 燃料化学学报(中英文), 2021, 49(3): 292-302. doi: 10.19906/j.cnki.JFCT.2021021
引用本文: 黄明, 朱亮, 马中青, 周秉亮, 刘晓欢, 叶结旺, 赵超. 金属改性分子筛催化热解木质素制取轻质芳烃[J]. 燃料化学学报(中英文), 2021, 49(3): 292-302. doi: 10.19906/j.cnki.JFCT.2021021
HUANG Ming, ZHU Liang, MA Zhong-qing, ZHOU Bing-liang, LIU Xiao-huan, YE Jie-wang, ZHAO Chao. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 292-302. doi: 10.19906/j.cnki.JFCT.2021021
Citation: HUANG Ming, ZHU Liang, MA Zhong-qing, ZHOU Bing-liang, LIU Xiao-huan, YE Jie-wang, ZHAO Chao. Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(3): 292-302. doi: 10.19906/j.cnki.JFCT.2021021

金属改性分子筛催化热解木质素制取轻质芳烃

doi: 10.19906/j.cnki.JFCT.2021021
基金项目: 国家自然科学基金(51706207),浙江省自然科学基金(LQ19E060009,LY21E060001),中国科协“青年人才托举工程”项目(2018QNRC001),国家林业和草原局科技创新青年拔尖人才项目(2019132617),浙江省属高校基本科研业务费专项资金(2020YQ006)资助
详细信息
    通讯作者:

    E-mail:mazq@zafu.edu.cn

  • 中图分类号: TK6

Production of light aromatics from the fast pyrolysis of lignin catalyzed by metal-modified H-ZSM-5 zeolites

Funds: The project was supported by the Natural Science Foundation of China (51706207), the Natural Science Foundation of Zhejiang Province (LQ19E060009, LY21E060001), the Young Elite Scientists Sponsorship Program by CAST (2018QNRC001), the Youth Talent Support Program by National Forestry and Grassland Administration (2019132617), the Fundamental Research Funds for the Provincial Universities of Zhejiang (2020YQ006)
  • 摘要: 采用浸渍法制备Zn、Ga和Mg金属改性的H-ZSM-5双功能催化剂,考察了金属种类(Zn、Ga和Mg)和磨木木质素种类(杉木针叶材磨木木质素(CF-MWL)、杨木阔叶材磨木木质素(P-MWL)和玉米秸秆草本植物磨木木质素(CS-MWL))对木质素催化热解过程中轻质芳烃产率的影响。结果表明,在三种磨木木质素中,杉木磨木木质素(CF-MWL)具有最高的碳含量(59.90%,质量分数)和高位热值(23.05 MJ/ kg),而玉米秸秆磨木木质素(CS-MWL)中的氢含量(6.51%,质量分数)和有效氢碳比(0.43)最高。催化热解结果显示,与未改性的H-ZSM-5相比,Ga/H-ZSM-5和Zn/H-ZSM-5促进了轻质芳烃的形成,而Mg/H-ZSM-5则抑制轻质芳烃生成;其中,Zn/H-ZSM-5对三种MWL催化热解制取轻质芳烃的产率最高,分别达到3.122 × 109 a.u./mg (CF-MWL)、2.916 × 109 a.u./mg(P-MWL)和2.865 × 109 a.u./mg(CS-MWL);在三种MWL中,杉木磨木木质素(CF-MWL)催化热解制备BTX的选择性产率最高,达到65.02%。催化剂表面的积炭分析结果显示,催化热解过程中生成的积炭优先占据H-ZSM-5的强酸位点,并且大部分集中于H-ZSM-5的外部。
  • FIG. 553.  FIG. 553.

    FIG. 553.  FIG. 553.

    图  1  三种磨木木质素的红外光谱谱图

    Figure  1  FT-IR spectra of three types of milled wood lignin

    图  2  金属改性前后HZSM-5的XRD谱图

    Figure  2  XRD patterns of the parent and metal modified HZSM-5 catalysts

    图  3  金属改性前后HZSM-5催化剂的微观形貌照片

    Figure  3  Morphologies of the parent and metal modified HZSM-5 catalysts

    图  4  金属改性前后HZSM-5催化剂的N2吸附-脱附等温曲线(a)及孔径分布曲线(b)

    Figure  4  N2 adsorption-desorption isotherms (a) and pore size distribution curves (b) of the parent and metal modified HZSM-5 catalysts

    图  5  金属改性前后HZSM-5催化剂的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of the parent and metal modified HZSM-5 catalysts

    图  6  木质素催化热解生物油组分含量分析

    Figure  6  Distribution of bio-oil components from lignin catalytic fast pyrolysis

    图  7  木质素催化热解制取BTX的选择性产率

    Figure  7  Selective yields of BTX from lignin catalytic fast pyrolysis

    图  8  使用后Zn/HZSM-5在氧气气氛下的TG/DTG曲线

    Figure  8  TG and DTG curves of the spent Zn/HZSM-5 catalyst in the oxygen atmosphere

    图  9  使用前后Zn/HZSM-5催化剂的N2吸附-脱附等温曲线(a)和孔径分布曲线(b)

    Figure  9  N2 adsorption-desorption isotherms (a) and pore size distribution curves (b) of the parent and spent Zn/HZSM-5

    图  10  使用前后Zn/HZSM-5催化剂的NH3-TPD谱图

    Figure  10  NH3-TPD profiles of the parent and spent Zn/HZSM-5 catalysts

    表  1  三种磨木木质素的元素分析和高位热值

    Table  1  Ultimate analysis and the higher heating value of three types of milled wood lignin

    Lignin
    species
    Ultimate analysis w/%QHHV/
    (MJ·kg−1)
    Hydrogen-to-carbon effective ratio
    CHONS
    CF-MWL59.906.3233.780.000.0023.050.42
    P-MWL59.626.0934.270.000.0222.770.36
    CS-MWL57.916.5135.440.000.1422.630.43
    下载: 导出CSV

    表  2  三种木质素的分子量分布

    Table  2  Molecular weight distribution of three types of milled wood lignin

    Lignin speciesMw/DaMn /DaPolydispersity index(PDI)
    CF-MWL21608932.42
    P-MWL277812672.19
    CS-MWL266513242.01
    下载: 导出CSV

    表  3  金属改性前后HZSM-5催化剂的孔结构特征

    Table  3  Pore structural characteristics of the parent and metal modified HZSM-5 catalysts

    CatalystSBET/
    (m2·g−1)
    vtotal/
    (cm3·g−1)
    vmeso/
    (cm3·g−1)
    vmicro/
    (cm3·g−1)
    dpore/
    nm
    HZSM-5393.670.2130.0520.1332.16
    Zn/HZSM-5382.480.2030.0470.1322.17
    Ga/HZSM-5356.960.1870.0420.1292.19
    Mg/HZSM-5363.780.1830.060.1122.18
    下载: 导出CSV

    表  4  金属改性前后HZSM-5催化剂的酸量

    Table  4  Acid amount of the parent and metal modified HZSM-5 catalysts

    CatalystAcid amount/(mmol·g−1)
    weak acid strong acidtotal acid
    HZSM-50.4770.671.147
    Zn/HZSM-50.4350.6311.066
    Ga/HZSM-50.4270.6561.083
    Mg/HZSM-50.4270.6081.035
    下载: 导出CSV

    表  5  使用后Zn/HZSM-5催化剂的积炭分析

    Table  5  Coke formation analysis of the spent Zn/HZSM-5 catalyst

    CatalystWMIC/ ($ {\rm{m}}{{\rm{g}}_{{\rm{coke}}}} \cdot {\rm{g}}_{{\rm{cat}}}^{ - 1} $)WEC/ ($ {\rm{m}}{{\rm{g}}_{{\rm{coke}}}} \cdot {\rm{g}}_{{\rm{cat}}}^{ - 1} $)WTC/ ($ {\rm{m}}{{\rm{g}}_{{\rm{coke}}}} \cdot {\rm{g}}_{{\rm{cat}}}^{ - 1} $)
    Spent Zn/HZSM-540.25115.99156.25
    下载: 导出CSV

    表  6  使用前后Zn/HZSM-5催化剂的孔结构特征

    Table  6  Pore structural characteristics of the parent and spent Zn/HZSM-5

    CatalystSBET/
    (m2·g−1)
    vtotal/
    (cm3·g−1)
    vmeso/
    (cm3·g−1)
    vmicro/
    (cm3·g−1)
    dpore/
    nm
    Parent Zn/HZSM-5382.480.2030.0470.1322.17
    Spent Zn/HZSM-5325.170.1220.0340.0882.09
    下载: 导出CSV

    表  7  使用前后Zn/HZSM-5催化剂的酸量

    Table  7  Acidity of the parent and spent Zn/HZSM-5 catalysts

    CatalystAcide amount/(mmol·g−1)
    weak acidstrong acidtotal acid
    Parent Zn/HZSM-50.4350.6311.066
    Spent Zn/HZSM-50.4080.1090.517
    下载: 导出CSV
  • [1] 马中青, 王浚浩, 黄明, 蔡伟, 徐嘉龙, 杨优优. 木质素种类和催化剂添加量对热解产物的影响[J]. 农业工程学报,2020,36(1):274−282. doi: 10.11975/j.issn.1002-6819.2020.01.033

    MA Zhong-qing, WANG Jun-hao, HUANG Ming, CAI Wei, XU Jia-long, YANG You-you. Effects of lignin species and catalyst addition on pyrolysis products[J]. Trans CSAE,2020,36(1):274−282. doi: 10.11975/j.issn.1002-6819.2020.01.033
    [2] LI C Z, ZHAO X C, WANG A Q, HUBER G W, ZHANG T. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chem Rev,2015,115(21):11559−11624.
    [3] WANG S R, DAI G X, YANG H P, LUO Z Y. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Prog Energy Combust,2017,62:33−86.
    [4] 郑志锋, 郑云武, 黄元波, 卢怡, 王珍, 李文斌, 李水荣, 林鹿. 木质生物质催化热解制备富烃生物油研究进展[J]. 林业工程学报,2019,4(2):1−12.

    ZHENG Zhi-feng, ZHENG Yun-wu, HUANG Yuan-bo, LU Yi, WANG Zhen, LI Wen-bin, LI Shui-rong, LIN Lu. Recent research progress on production of hydrocarbon-rich bio-oil through catalytic pyrolysis of lignocellulosic biomass[J]. J Fo Eng,2019,4(2):1−12.
    [5] MA Z Q, WANG J H, ZHOU H Z, ZHANG Y, YANG Y Y, LIU X H, YE J W, CHEN D Y, WANG S R. Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities[J]. Fuel Process Technol,2018,181:142−156.
    [6] ZHOU S, XUE Y, SHARMA A, BAI X L. Lignin valorization through thermochemical conversion: comparison of hardwood, softwood and herbaceous lignin[J]. ACS Sustainable Chem Eng,2016,4(12):6608−6617.
    [7] NARON D R, COLLARD F X, TYHODA L, GÖRGENS J F. Influence of impregnated catalyst on the phenols production from pyrolysis of hardwood, softwood, and herbaceous lignins[J]. Ind Crop Prod,2019,131:348−356.
    [8] SHEN D K, LIU G F, ZHAO J, XUE J T, GUAN S P, XIAO R. Thermo-chemical conversion of lignin to aromatic compounds: Effect of lignin source and reaction temperature[J]. J Anal Appl Pyrolsis,2015,112:56−65.
    [9] SHEN DK, ZHAO J, XIAO R. Catalytic transformation of lignin to aromatic hydrocarbons over solid-acid catalyst: Effect of lignin sources and catalyst species[J]. Energy Convers Manage,2016,124:61−72.
    [10] DU Z Y, MA X C, LI Y, CHEN P, LIU Y H, LIN X Y, LEI H W, RUAN R. Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: catalyst screening in a pyroprobe[J]. Bioresour Technol,2013,139:397−401.
    [11] ZHANG M, RESENDE F L P, MOUTSOGLOU A. Catalytic fast pyrolysis of aspen lignin via Py-GC/MS[J]. Fuel,2014,116:358−369.
    [12] HUANG M, MA Z Q, ZHOU B L, YANG Y Y, CHEN D Y. Enhancement of the production of bio-aromatics from renewable lignin by combined approach of torrefaction deoxygenation pretreatment and shape selective catalytic fast pyrolysis using metal modified zeolites[J]. Bioresour Technol,2020,301:122754.
    [13] LOK C M, DOORN J V, ALMANSA G A. Promoted ZSM-5 catalysts for the production of bio-aromatics, a review[J]. Renewable Sustainable Energy Rev,2019,113:109248.
    [14] CHENG Y T, JAE J H, SHI J, FAN W, HUBER G W. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angew Chem Int Ed,2012,51(6):1387−1390.
    [15] KIM J W, PARK S H, JUNG J, JEON J K, KO C H, JEONG K E, PARK Y K. Catalytic pyrolysis of mandarin residue from the mandarin juice processing industry[J]. Bioresour Technol,2013,136:431−436.
    [16] VICHAPHUND S, AHT-ONG D, SRICHAROENCHAIKUL V, ATONG D D. Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods[J]. Renewable Energy,2015,79:28−37.
    [17] ZHANG H Y, ZHENG J, XIAO R. Catalytic pyrolysis of willow wood with Me/ZSM-5 (Me=Mg, K, Fe, Ga, Ni) to produce aromatics and olefins[J]. Bio Resources,2013,8(4):5612−5621.
    [18] ZHENG A Q, JIANG L Q, ZHAO Z L, HUANG Z, ZHAO K, WEI G Q, WANG X B, HE F, LI H B. Impact of torrefaction on the chemical structure and catalytic fast pyrolysis behavior of hemicellulose, lignin, and cellulose[J]. Energy Fuels,2015,29(12):8027−8034.
    [19] MA Z Q, SUN Q F, YE J W, YAO Q F, ZHAO C. Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA-FTIR and Py-GC/MS[J]. J Anal Appl Pyrolsis,2016,117:116−124.
    [20] 张雨, 王浚浩, 马中青, 周涵芝, 杨优优, 张文标. 温度对竹材烘焙过程中气固液三相产物组成及特性的影响[J]. 农业工程学报,2018,34(18):242−251. doi: 10.11975/j.issn.1002-6819.2018.18.030

    ZHANG Yu, WANG Jun-hao, MA Zhong-qing, ZHOU Han-zhi, YANG You-you, ZHANG Wen-biao. Effects of torrefaction temperature on composition and characteristics of gas-solid-liquid three-phase products in bamboo torrefaction process[J]. Trans CSAE,2018,34(18):242−251. doi: 10.11975/j.issn.1002-6819.2018.18.030
    [21] KIM J, CHOI M, RYOO R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J Catal,2010,269(1):219−228.
    [22] LEE K, LEE S, JUN Y, CHOI M. Cooperative effects of zeolite mesoporosity and defect sites on the amount and location of coke formation and its consequence in deactivation[J]. J Catal,2017,347:222−230.
    [23] WANG S Q, LI Z H, BAI X Y, YI W M, FU P. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production[J]. Bioresour Technol,2019,278:66−72.
    [24] ZHANG H Y, CHENG Y T, VISPUTE T P, XIAO R, HUBER G W. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: The hydrogen to carbon effective ratio[J]. Energy Environ Sci,2011,4(6):2297−2307.
    [25] VESES A, PUÉRTOLAS B, LÓPEZ J M, CALLÉN M S, SOLSONA B, GARCÍA T. Promoting Deoxygenation of Bio-Oil by Metal-Loaded Hierarchical ZSM-5 Zeolites[J]. ACS Sustainable Chem Eng,2016,4:1653−1660.
    [26] DAI G X, ZOU Q, WANG S R, ZHAO Y, ZHU L J, HUANG Q X. Effect of torrefaction on the structure and pyrolysis behavior of lignin[J]. Energy Fuels,2017,32:4160−4166.
    [27] SUN X F, WANG H H, ZHANG G C, FOWLER P, RAJARATNAM M. Extraction and characterization of lignins from maize stem and sugarcane bagasse[J]. J Appl Polym Sci,2011,120(6):3587−3595.
    [28] YANG H M, NORINAGA K, LI J, ZHU W Y, WANG H J. Effects of HZSM-5 on volatile products obtained from the fast pyrolysis of lignin and model compounds[J]. Fuel Process Technol,2018,181:207−214.
    [29] 郑云武, 杨晓琴, 沈华杰, 黄元波, 刘灿, 郑志锋. 改性微-介孔催化剂的制备及其催化生物质热解制备芳烃[J]. 农业工程学报,2018,34(20):240−249. doi: 10.11975/j.issn.1002-6819.2018.20.031

    ZHENG Yun-wu, YANG Xiao-qin, SHEN Hua-jie, HUANG Yuan-bo, LIU Can, ZHENG Zhi-feng. Preparation of modified hierarchical HZSM-5 catalyst and its application on pyrolysis of biomass to enhance aromatics products[J]. Trans CSAE,2018,34(20):240−249. doi: 10.11975/j.issn.1002-6819.2018.20.031
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  556
  • HTML全文浏览量:  266
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 修回日期:  2020-11-20
  • 网络出版日期:  2021-03-19
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回