留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镶嵌结构沥青焦的制备与表征:重相沥青中QI含量的影响

张春阳 朱亚明 徐允良 胡朝帅 赖仕全 高丽娟 赵雪飞

张春阳, 朱亚明, 徐允良, 胡朝帅, 赖仕全, 高丽娟, 赵雪飞. 镶嵌结构沥青焦的制备与表征:重相沥青中QI含量的影响[J]. 燃料化学学报(中英文), 2021, 49(10): 1412-1420. doi: 10.19906/j.cnki.JFCT.2021057
引用本文: 张春阳, 朱亚明, 徐允良, 胡朝帅, 赖仕全, 高丽娟, 赵雪飞. 镶嵌结构沥青焦的制备与表征:重相沥青中QI含量的影响[J]. 燃料化学学报(中英文), 2021, 49(10): 1412-1420. doi: 10.19906/j.cnki.JFCT.2021057
ZHANG Chun-yang, ZHU Ya-ming, XU Yun-liang, HU Chao-shuai, LAI Shi-quan, GAO Li-juan, ZHAO Xue-fei. Preparation and characterization of pitch-based mosaic coke from heavy-phase coal pitch: Effects of quinoline insoluble[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1412-1420. doi: 10.19906/j.cnki.JFCT.2021057
Citation: ZHANG Chun-yang, ZHU Ya-ming, XU Yun-liang, HU Chao-shuai, LAI Shi-quan, GAO Li-juan, ZHAO Xue-fei. Preparation and characterization of pitch-based mosaic coke from heavy-phase coal pitch: Effects of quinoline insoluble[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1412-1420. doi: 10.19906/j.cnki.JFCT.2021057

镶嵌结构沥青焦的制备与表征:重相沥青中QI含量的影响

doi: 10.19906/j.cnki.JFCT.2021057
基金项目: 国家自然科学基金(U1361126),辽宁省教育厅优秀青年科技人才项目(2020LNQN03),辽宁省自然科学基金(2021-MS-306)和辽宁科技大学优秀人才培养项目(2018RC07)资助
详细信息
    作者简介:

    张春阳:2285444959@qq.com

    通讯作者:

    E-mail: zhuyaming0504@163.com

    zhao_xuefei@sohu.com

  • 中图分类号: TQ016.1

Preparation and characterization of pitch-based mosaic coke from heavy-phase coal pitch: Effects of quinoline insoluble

Funds: The project was supported by the National Natural Science Foundation of China (U1361126), Liaoning Provincial Department of Education Project (2020LNQN03), Natural Science Foundation of Liaoning Province (2021-MS-306), Excellent Talent Training Project of University of Science and Technology Liaoning (2018RC07)
  • 摘要: 镶嵌结构沥青焦作为一种特种人造炭材料,是制备高品质各向同性石墨和核石墨的重要原料。镶嵌结构沥青焦的性质在很大程度上决定了其石墨制品的质量。为进一步明确重相沥青中QI含量对其镶嵌结构沥青焦的结构及性质的影响,本研究以九种QI含量迥异的重相沥青为原料,制备了系列镶嵌结构沥青焦。利用偏光显微镜、扫描电镜、XRD、Raman光谱及分峰拟合的方法对镶嵌结构焦的微观结构进行了判定,并对九种镶嵌结构沥青焦的显微强度进行了研究。结果表明,重相沥青中QI含量越高,在液相炭化过程中越有利于镶嵌结构的生成。并且,随着重相沥青QI含量的增加,镶嵌结构沥青焦中趋于规整炭微晶含量逐渐降低,无定型炭含量逐渐增加,强度越大。当重相沥青中QI含量超过7%时,制备的镶嵌结构沥青焦中镶嵌结构总含量(细粒镶嵌、中粒镶嵌和粗粒镶嵌)超过82%,显微强度超过85%。换言之,QI含量超过7%的重相沥青是生产优质镶嵌结构沥青焦的优选原料。
  • FIG. 961.  FIG. 961.

    FIG. 961.  FIG. 961.

    图  1  重相沥青的制备过程

    Figure  1  Preparation process of heavy-phase pitch

    图  2  重相沥青的红外光谱谱图

    Figure  2  FT-IR spectra graph of heavy-phase pitch

    图  3  镶嵌结构沥青焦中六种典型偏光结构:(a)片状结构,(b)粗纤维结构,(c)细纤维结构,(d)粗粒镶嵌结构,(e)中粒镶嵌结构,和(f)细粒镶嵌结构

    Figure  3  Six kinds of typical optical structure in mosaic coke: (a) leaflet structure, (b) coarse fibrous structure, (c) fine fibrous structure, (d) coarse mosaic structure, (e) medium mosaic structure, and (f) fine mosaic structure

    图  4  镶嵌结构沥青焦的XRD谱图(a)和AGDP-0.3-50%-C拟合谱图(b)

    Figure  4  XRD graph of mosaic cokes (a) and curve-fitted graph of AGDP-0.3-50%-C (b)

    图  5  镶嵌结构焦的Raman光谱谱图(a)和AGDP-0.3-50%-C的拟合谱图(b)

    Figure  5  Raman spectra of mosaic cokes (a) and curve-fitted graph of AGDP-0.3-50%-C (b)

    图  6  镶嵌结构沥青焦的SEM照片:(a)AGDP-0.3-50%-C,(b)AGDP-0.4-50%-C,(c)AGDP-0.5-50%-C,(d)AGDP-0.6-50%-C,(e)AGDP-0.7-50%-C,(f)AGDP-0.8-50%-C,(g)AGDP-0.8-60%-C,(h)AGDP-0.8-70%-C和(i)AGDP-0.8-80%-C

    Figure  6  SEM graphs of mosaic cokes: (a) AGDP-0.3-50%-C, (b) AGDP-0.4-50%-C, (c) AGDP-0.5-50%-C, (d) AGDP-0.6-50%-C, (e) AGDP-0.7-50%-C, (f) AGDP-0.8-50%-C, (g) AGDP-0.8-60%-C,(h) AGDP-0.8-70%-C and (i) AGDP-0.8-80%-C

    图  7  镶嵌结构沥青焦的显微强度

    Figure  7  Micro-strength of mosaic cokes

    表  1  重相沥青的工业分析

    Table  1  Proximate analysis of heavy-phase pitches

    SampleSP /℃TI /%QI /%CV /%
    AGDP-0.3-50%7820.314.9953.84
    AGDP-0.4-50%7922.507.0455.93
    AGDP-0.5-50%8025.677.0654.77
    AGDP-0.6-50%8224.187.2155.36
    AGDP-0.7-50%8223.726.1354.00
    AGDP-0.8-50%8625.906.6458.99
    AGDP-0.8-60%12031.559.7061.00
    AGDP-0.8-70%13037.2314.0264.49
    AGDP-0.8-80%15645.2120.2267.82
    下载: 导出CSV

    表  2  重相沥青的元素分析

    Table  2  Ultimate analysis of heavy-phase pitches

    SampleC /%H /%N /%S /%O* /%
    AGDP-0.3-50%92.214.091.080.751.87
    AGDP-0.4-50%93.23.910.860.571.46
    AGDP-0.5-50%93.253.880.910.541.42
    AGDP-0.6-50%93.013.951.010.591.44
    AGDP-0.7-50%93.034.031.120.621.2
    AGDP-0.8-50%92.764.061.001.171.01
    AGDP-0.8-60%91.903.601.020.942.54
    AGDP-0.8-70%91.823.641.030.792.72
    AGDP-0.8-80%91.813.230.950.783.23
    *: by difference
    下载: 导出CSV

    表  3  九种镶嵌结构沥青焦的光学显微结构分布

    Table  3  Distribution of optical micro-structure of 9 kinds of mosaic cokes

    SampleOptical microstructure /%
    LFcFfMcMmMf∑M*
    AGDP-0.3-50%-C24.002.503.5014.5016.0039.5070.00
    AGDP-0.4-50%-C15.190.630.6323.4219.6240.5183.55
    AGDP-0.5-50%-C13.940.001.9219.7123.0841.3584.14
    AGDP-0.6-50%-C12.930.684.0814.2925.1742.8582.31
    AGDP-0.7-50%-C26.711.431.4316.8616.4337.1470.43
    AGDP-0.8-50%-C25.811.072.1418.0411.2341.7170.98
    AGDP-0.8-60%-C20.120.612.4421.9516.4738.4176.83
    AGDP-0.8-70%-C11.941.000.5020.4021.8944.2786.56
    AGDP-0.8-80%-C11.411.040.3417.4124.8344.9787.21
    ∑M:Mc + Mm + Mf
    下载: 导出CSV

    表  4  镶嵌结构焦中炭微晶结构参数

    Table  4  Structural parameters of the microcrystalline structure in mosaic cokes

    Sampleγ /°π /°AγAπIg /%Lc /nmNn
    AGDP-0.3-50%-C21.6101825.58083743.273920.4684.061.786.1312.01
    AGDP-0.4-50%-C21.5234325.47738553.912665.3682.791.684.767.25
    AGDP-0.5-50%-C22.1867525.46421591.042874.0982.941.734.717.09
    AGDP-0.6-50%-C21.3819025.44661413.722140.8583.801.704.446.30
    AGDP-0.7-50%-C21.8518225.5768433.772476.1785.091.766.0211.61
    AGDP-0.8-50%-C21.7716525.54868547.422964.7284.411.775.7510.57
    AGDP-0.8-60%-C21.8599625.43312842.343380.2180.051.754.406.20
    AGDP-0.8-70%-C21.3862025.38444548.102816.6183.711.723.804.61
    AGDP-0.8-80%-C21.3101225.41089517.702672.6583.771.694.045.23
    下载: 导出CSV

    表  5  镶嵌结构焦的分峰拟合数据

    Table  5  Curve-fitting data of mosaic cokes

    SampleIntegrate areaRatio /%
    ID1ID2ID3ID4IGIG/IAllID3/IAll
    AGDP-0.3-50%-C 241513.7 29201.65 35629.39 41520.8 40177.34 10.35 9.18
    AGDP-0.4-50%-C 541957.9 61585.15 88291.38 114910 81506.39 9.18 9.94
    AGDP-0.5-50%-C 365501.6 41021.28 57707.57 88800.16 53698.82 8.85 9.51
    AGDP-0.6-50%-C 274546.2 36099.4 45174.6 58339.46 39870.09 8.78 9.95
    AGDP-0.7-50%-C 615535.8 63206.43 95462.96 162349.3 113947.1 10.85 9.09
    AGDP-0.8-50%-C 419794.9 41435.38 64913.62 109506 69256.43 9.82 9.21
    AGDP-0.8-60%-C 406857.8 50986.83 65061.17 96048.75 56192.3 8.32 9.64
    AGDP-0.8-70%-C 503672.7 54928.00 78977.61 103660.2 66017.56 8.18 9.78
    AGDP-0.8-80%-C 328627.9 46658.08 54453.43 81594.12 41748.72 7.55 9.85
    下载: 导出CSV
  • [1] HOSSEINI M S CHARTRAND P. Thermodynamics and phase relationship of carbonaceous mesophase appearing during coal tar pitch carbonization[J]. Fuel,2020,275:117899. doi: 10.1016/j.fuel.2020.117899
    [2] ZHANG X W, MA Z K, MENG Y C, XIAO M, FAN B L, SONG H H, YIN Y Z. Effects of the addition of conductive graphene on the preparation of mesophase from refined coal tar pitch[J]. J Anal Appl Pyrolysis,2019,140:274−280. doi: 10.1016/j.jaap.2019.04.004
    [3] YUAN M, CAO B, MENG C Y, ZUO H M, LI A, MA Z K, CHEN X H, SONG H H. Preparation of pitch-based carbon microbeads by a simultaneous spheroidization and stabilization process for lithium-ion batteries[J]. Chem Eng J,2020,400:125948. doi: 10.1016/j.cej.2020.125948
    [4] DONG Y, ZHU J Y, LI Q Q, ZHANG S, SONG H H, JIA D Z. Carbon materials for high mass loading supercapacitors: filling the gap between new materials and practical applications[J]. J Mater Chem A,2020,8:21930−21946. doi: 10.1039/D0TA08265A
    [5] HU H, WU M B. Heavy oil-derived carbon for energy storage applications[J]. J Mater Chem A,2020,8(15):7066−7082. doi: 10.1039/D0TA00095G
    [6] LI L, LIN X C, HE J, ZHANG Y K, LV J X, WANG Y G. Preparation of mesocarbon microbeads from coal tar pitch with blending of biomass tar pitch[J]. J Anal Appl Pyrolysis,2021,155:105039. doi: 10.1016/j.jaap.2021.105039
    [7] YANG X, WANG X, TSANG D K L. The effect of thermal oxidation on the coefficient of thermal expansion of nuclear graphite[J]. J Mater Sci,2020,55:7805−7815. doi: 10.1007/s10853-020-04577-8
    [8] NIU H, ZUO P, SHEN W, QU S. Evaluating multi: tep oxidative stabilization behavior of coal tar pitch-based fiber[J]. J Appl Polym Sci,2020,e50002.
    [9] 林雄超, 盛喆, 邵苛苛, 许德平, 王永刚. 煤焦油沥青族组成对针状焦中间相结构的影响[J]. 燃料化学学报,2021,49(2):151−159.

    LIN Xiong-chao, SHENG Zhe, SHAO Ke-ke, XU De-ping, WANG Yong-gang. Influence of group component distribution of coal tar pitch on mesophase structure development of needle coke[J]. J Fuel Chem Technol,2021,49(2):151−159.
    [10] ZHU Y M, HU C S, ZHAO C L, XU Y L, GAO L J, ZHAO X F. Thermal conversion behavior of medium-low-temperature coal tar pitch during liquid-phase carbonization process[J]. ChemistrySelect,2019,4:11886−11892. doi: 10.1002/slct.201902397
    [11] ZHU Y M, ZHAO X F, YUAN J, ZHAO C L, HU C S. Changes in structure of coal liquefied pitch during liquid-phase carbonization process[J]. Carbon Lett,2019,29(1):37−45. doi: 10.1007/s42823-019-00016-0
    [12] GAO F, ZANG Y H, WANG Y, GUAN C Q, QU J Y, WU M B. A review of the synthesis of carbon materials for energy storage from biomass and coal/heavy oil waste[J]. New Carbon Mater,2021,36(1):34−48. doi: 10.1016/S1872-5805(21)60003-3
    [13] 许蕾, 王相君, 杨桃, 池永庆, 宋燕, 宋怀河, 刘占军. 高温煤沥青不同组分中间相形成过程[J]. 新型炭材料,2020,35(5):599−608.

    XU Lei, WANG Xiang-jun, YANG Tao, CHI Yong-qing, SONG Yan, SONG Huai-he, LIU Zhan-jun. Formation of mesophase from the components of high temperature coal tar pitch[J]. New Carbon Mater,2020,35(5):599−608.
    [14] ZHU Y M, SUN S S, XU Y L, ZHAO C L, HU C S, CHENG J X, ZHAO X F. Preparation and characterization of pitch coke from oxidized polymerized pitch[J]. Asia-Pac J Chem Eng,2020,e2497.
    [15] 方登科, 杨栋梁, 杨侨, 李轩科. 以石油焦和高温煤沥青制备各向同性石墨材料的研究[J]. 武汉科技大学学报,2012,35(4):298−303.

    FANG Deng-ke, YANG Dong-liang, YANG Qiao, LI Xuan-ke. Preparation of isotropic graphite from petroleum coke and high-temperature coal tar pitch[J]. J Wuhan Univ Technol,2012,35(4):298−303.
    [16] MOSKALEV I V, KISELKOV D M, ABATUROV A L. Formation of isotropic coke microstructure. 1. Production of isotropic coke from mixtures of the anthracene fraction and coal pitch[J]. Coke Chem,2021,63(10):481−494.
    [17] ABATUROV A L, MOSKALEV I V, KISELKOV D M, STRELNIKOV V N. Production of isotropic coke from shale: Microstructure of coke from the thermally oxidized distillation residue of shale tar[J]. Coke Chem,2018,61(11):433−446. doi: 10.3103/S1068364X18110029
    [18] 袁观明, 薛政, 崔正威, 董志军, 李轩科, 张中伟, 王俊山. 高定向石墨块的控制制备及其导热性能影响因素研究[J]. 无机材料学报,2017,32(6):587−595. doi: 10.15541/jim20160480

    YUAN Guan-ming, XUE Zheng, CUI Zheng-wei, DONG Zhi-jun, LI Xuan-ke, ZHANG Zhong-wei, WANG Jun-shan. Controlled preparation and thermal conductivity of highly oriented graphite blocks[J]. J Inorg Mater,2017,32(6):587−595. doi: 10.15541/jim20160480
    [19] THEODOSIOU A, JONES A N, BURTON D, POWELL M, ROGERS M, LIVESEY V B. The complete oxidation of nuclear graphite waste via thermal treatment: An alternative to geological disposal[J]. J Nucl Mater,2018,507:208−217. doi: 10.1016/j.jnucmat.2018.05.002
    [20] ZHU Y M, XU Y L, HU C S, YIN X T, ZHAO C L, GAO L J, ZHAO X F. Preparation and characterization of mosaic coke from heavy-phase coal pitch[J]. Asia-Pac J Chem Eng,2019,e2369.
    [21] ZHU Y M, ZHAO C L, XU Y L, HU C S, ZHAO X F. Preparation and characterization of coal pitch-based needle coke (Part I): the effects of aromatic index (F(A)) in refined coal pitch[J]. Energy Fuels,2019,33:3456−3464. doi: 10.1021/acs.energyfuels.9b00160
    [22] ZHU Y M, HU C S, XU Y L, ZHAO C L, YIN X T, ZHAO X F. Preparation and characterization of coal pitch-based needle coke (Part II): the effects of β resin in refined coal pitch[J]. Energy Fuels,2020,34:2126−2134. doi: 10.1021/acs.energyfuels.9b03406
    [23] ZHU Y M, LIU H M, XU Y L, HU C S, ZHAO C L, CHENG J X, CHEN X X, ZHAO X F. Preparation and characterization of coal pitch based needle coke (Part III): The effects of quinoline insoluble in coal tar pitch[J]. Energy Fuels,2020,34(7):8676−8684. doi: 10.1021/acs.energyfuels.0c01049
    [24] YANG Y S, WANG C Y, CHEN M M, ZHENG J M. The role of primary quinoline insoluble on the formation of mesocarbon microbeads[J]. Fuel Process Technol,2010,92(1):154−157.
    [25] PETROVA B, TSYNTSARSKI B, BUIDINOVA T, PETROV N, ANIA C O, PARRA J B, MLADENOV M, TZVETKOV P. Synthesis of nanoporous carbons from mixtures of coal tar pitch and furfural and their application as electrode materials[J]. Fuel Process Technol,2010,91:1710−1716. doi: 10.1016/j.fuproc.2010.07.008
    [26] HE X Q, LIU X F, NIE B S, SONG D Z. FTIR and Raman Spectroscopy characterization of functional groups in various rank coals[J]. Fuel,2017,206:555−563. doi: 10.1016/j.fuel.2017.05.101
    [27] ZHU Y M, TANG S, ZHAO X F, GAO L J. Co-carbonization of single coking coal and pyrolytic extracts from datong long-flame coal[J]. Metall Res Technol,2019,116(1):115. doi: 10.1051/metal/2018049
    [28] ZHU Y M, ZHAO X F, GAO L J, LV J, CHENG J X, LAI S Q. Study on the pyrolysis characteristic and the microstructure of the pyrolysis products of β resins from different coal tar pitch[J]. J Chem Soc Pak,2018,40:343−353.
    [29] 王成扬, 陈明鸣, 李明伟. 沥青基炭材料[M]. 北京: 化学工业出版社, 2018.

    WANG Cheng-yang, CHEN Ming-ming, LI Ming-wei. Pitch-Based Carbon Materials[M]. Beijing: Chemical Industry Press, 2018.
    [30] 李磊, 林雄超, 刘哲, 张玉坤, 寇世博, 王永刚. 煤系针状焦偏光显微结构的识别及定量分析[J]. 燃料化学学报,2021,49(3):265−273.

    LI Lei, LIN Xiong-chao, LIU Zhe, ZHANG Yu-kun, KOU Shi-bo, WANG Yong-gang. Identification and quantitative analysis of polarized light microstructure of coal-derived needle coke[J]. J Fuel Chem Technol,2021,49(3):265−273.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  147
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-04-20
  • 网络出版日期:  2021-06-09
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回