留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤液化铁基催化剂对煤焦气化特性影响和动力学研究

何清 李恒 王思敏 程晨 郭庆华 于广锁

何清, 李恒, 王思敏, 程晨, 郭庆华, 于广锁. 煤液化铁基催化剂对煤焦气化特性影响和动力学研究[J]. 燃料化学学报(中英文), 2022, 50(2): 143-151. doi: 10.19906/j.cnki.JFCT.2021072
引用本文: 何清, 李恒, 王思敏, 程晨, 郭庆华, 于广锁. 煤液化铁基催化剂对煤焦气化特性影响和动力学研究[J]. 燃料化学学报(中英文), 2022, 50(2): 143-151. doi: 10.19906/j.cnki.JFCT.2021072
HE Qing, LI Heng, WANG Si-min, CHENG Chen, GUO Qing-hua, YU Guang-suo. Effect of iron-based catalyst from coal liquefaction on coal char gasification reactivity and kinetics[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 143-151. doi: 10.19906/j.cnki.JFCT.2021072
Citation: HE Qing, LI Heng, WANG Si-min, CHENG Chen, GUO Qing-hua, YU Guang-suo. Effect of iron-based catalyst from coal liquefaction on coal char gasification reactivity and kinetics[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 143-151. doi: 10.19906/j.cnki.JFCT.2021072

煤液化铁基催化剂对煤焦气化特性影响和动力学研究

doi: 10.19906/j.cnki.JFCT.2021072
基金项目: 国家重点研发计划(2017YFB0602404)资助
详细信息
    作者简介:

    何清:hqenjoy@163.com

    通讯作者:

    E-mail: gqh@ecust.edu.cn

  • 中图分类号: TQ530.2

Effect of iron-based catalyst from coal liquefaction on coal char gasification reactivity and kinetics

Funds: The project was supported by National Key R&D Program of China (2017YFB0602404)
  • 摘要: 本研究以哈密原煤和脱矿煤为原料,研究煤液化铁基催化剂对煤焦结构和气化反应性的影响。利用扫描电镜能谱仪和物理吸附仪研究煤焦表面形貌、元素分布和介孔特性,利用热重分析仪研究煤焦气化特性,采用model-fitting和model-free方法研究反应动力学。结果表明,脱矿和负载催化剂对煤焦表面附着物的影响较主体基质明显。负载催化剂的煤焦比表面积显著增加。铁基催化剂提升煤焦气化活性可归因于煤焦表面富集较多Fe和AAEMs等元素,以及比表面积的增大。负载催化剂的脱矿煤焦表现出较大的相对催化活性,且其对升温速率和碳转化率的变化不敏感。煤焦气化特性的差异将随升温速率的升高而减小。铁基催化剂可提高原煤焦的气化反应指前因子A,降低脱矿煤焦的反应活化能Ea。非等温条件下,煤焦气化反应活化能随转化率的增加而降低。根据模型拟合度和动力学补偿效应,随机孔模型是描述煤焦气化的最佳模型,且更适合于脱矿煤焦(催化)气化。
  • FIG. 1260.  FIG. 1260.

    FIG. 1260.  FIG. 1260.

    图  1  煤焦表面形貌(a) HMc, (b) HMCc, (c) HMNc和(d) HMNCc

    Figure  1  Surface morphology of coal char (a) HMc, (b) HMCc, (c) HMNc and (d) HMNCc

    图  2  煤焦表面元素分布

    Figure  2  Element distribution of coal char surface (a): matrix; (b): attachment

    图  3  煤焦非等温气化特性曲线

    Figure  3  Non-isothermal gasification curves of coal char

    (a): HMc/HMCc; (b): HMNc/HMNCc

    图  4  升温速率对气化反应特性的影响

    Figure  4  Effect of heating rates on gasification property (a): peak temperature Tp; (b): maximum reaction rate Rmax; (c): gasification index G

    图  5  气化反应活化能随转化率的变化

    Figure  5  Gasification Ea variation with conversion

    图  6  动力学补偿效应

    Figure  6  Kinetic compensation effect (HMc, 5 ℃/min as an example)

    表  1  HM煤的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of HM coal

    SampleProximate analysis wd/%Ultimate analysis wdaf/%
    VAFCCHO*NS
    HM48.767.2344.0265.655.9319.660.830.70
    HMc12.1210.8477.0483.951.101.911.240.96
    HMCc12.8417.5669.6078.541.150.511.191.04
    HMNc6.699.1184.2086.751.190.651.380.92
    HMNCc5.6713.6580.6882.461.130.231.151.38
    V: volatile; A: ash; FC: fixed carbon; d: dry basis; daf: dry ash-free basis; *: by difference
    下载: 导出CSV

    表  2  HM煤灰分组成

    Table  2  Ash composition of HM coal

    Contet w/% Residual
    CaOSO3SiO2Al2O3Fe2O3Na2OMgOP2O5TiO2K2O
    26.8916.8016.0615.4614.285.322.970.400.300.271.25
    下载: 导出CSV

    表  3  煤焦介孔结构参数

    Table  3  Mesopore parameters of coal char

    SampleSSA/(m2·g−1)PV/(cm3·g−1)APD /nm
    HMc 0.10 0.003 43.3
    HMCc 170.42 0.107 2.5
    HMNc 0.27 0.001 18.5
    HMNCc 96.54 0.062 2.5
    SSA: specific surface area; PV: pore volume; APD: average pore distribution
    下载: 导出CSV

    表  4  Model-fitting分析动力学参数

    Table  4  Kinetic parameters of model-fitting analysis (lnA: min−1, Ea: kJ/mol)

    SampleVMGMRPM
    lnAEaSSRlnAEaSSRlnAEaΨSSR
    HMc 21.9 216.6 0.566 19.8 200.0 0.213 18.0 186.6 4.17 0.092
    HMCc 22.9 221.5 0.563 20.8 204.5 0.277 19.6 195.7 2.76 0.231
    HMNc 21.4 219.8 0.111 20.1 210.0 0.059 19.6 205.3 0.83 0.031
    HMNCc 20.9 208.7 0.797 19.1 194.0 0.355 16.9 178.1 5.81 0.156
    下载: 导出CSV

    表  5  Model-free和动力学补偿分析参数

    Table  5  Kinetic parameters of model-free and kinetic compensation effect analysis (lnA: min−1, Ea: kJ/mol)

    SampleModel-free analysisKCE analysis
    FriedmanVyazovkinKASlnAEaR2
    HMc 171.82 193.45 192.71 17.39 182.11 0.998
    HMCc 171.40 203.14 202.46 18.47 188.17 0.988
    HMNc 198.92 212.22 211.50 19.28 206.82 0.999
    HMNCc 167.68 182.55 181.78 16.81 177.73 0.999
    下载: 导出CSV
  • [1] 王明华, 蒋文化, 韩一杰. 现代煤化工发展现状及问题分析[J]. 化工进展,2017,36(8):2882−2887.

    WANG Ming-hua, JIANG Wen-hua, HAN Yi-jie. Analysis on the present situation and problems of modern coal-chemical industry[J]. Chem Ind Eng Prog,2017,36(8):2882−2887.
    [2] CHU X, LI W, LI B, CHEN H. Sulfur transfers from pyrolysis and gasification of direct liquefaction residue of Shenhua coal[J]. Fuel,2008,87(2):211−215. doi: 10.1016/j.fuel.2007.04.014
    [3] ZHANG X, SONG X, WANG J, SU W, BAI Y, ZHOU B, YU G. CO2 gasification of Yangchangwan coal catalyzed by iron-based waste catalyst from indirect coal-liquefaction plant[J]. Fuel,2021,285:119228. doi: 10.1016/j.fuel.2020.119228
    [4] ZHAO D, LIU H, LU P, SUN B, GUO S, QIN M. DFT study of the catalytic effect of Fe on the gasification of char-CO2[J]. Fuel,2021,292.
    [5] LIU D, GAO J, WU S, QIN Y. Effect of char structures caused by varying the amount of FeCl3 on the pore development during activation[J]. RSC Adv,2016,6(90):87478−87485. doi: 10.1039/C6RA14712G
    [6] XU B, CAO Q, KUANG D, GASEM K A M, ADIDHARMA H, DING D, FAN M. Kinetics and mechanism of CO2 gasification of coal catalyzed by Na2CO3, FeCO3 and Na2CO3-FeCO3[J]. J Energy Inst,2020,93(3):922−933. doi: 10.1016/j.joei.2019.08.004
    [7] ZHANG F, SUN H, BI J, QU X, YAN S, ZHANG J, ZHANG J. The evolution of Fe and Fe-Ca catalysts during char catalytic hydrogasification[J]. Fuel,2019,257:116040. doi: 10.1016/j.fuel.2019.116040
    [8] LAHIJANI P, ZAINAL Z A, MOHAMED A R. Catalytic effect of iron species on CO2 gasification reactivity of oil palm shell char[J]. Thermochim Acta,2012,546:24−31. doi: 10.1016/j.tca.2012.07.023
    [9] YU G, YU D, LIU F, YU X, HAN J, WU J, XU M. Different catalytic action of ion-exchanged calcium in steam and CO2 gasification and its effects on the evolution of char structure and reactivity[J]. Fuel,2019,254.
    [10] HE Q, YU J, SONG X, DING L, WEI J, YU G. Utilization of biomass ash for upgrading petroleum coke gasification: Effect of soluble and insoluble components[J]. Energy,2020,192:116642. doi: 10.1016/j.energy.2019.116642
    [11] HE Q, GUO Q, UMEKI K, DING L, WANG F, YU G. Soot formation during biomass gasification: A critical review[J]. Renewable Sustainable,2021,139:110710. doi: 10.1016/j.rser.2021.110710
    [12] 林善俊, 周志杰, 霍威, 丁路, 于广锁. 内扩散对煤和石油焦水蒸气气化反应性能的影响[J]. 燃料化学学报,2014,8:905−912. doi: 10.3969/j.issn.0253-2409.2014.08.002

    LIN Shanjun, ZHOU Zhijie, HUO Wei, DING Lu, YU Guangsuo. Effect of internal diffusion on steam gasification reactivity of coal and petroleum coke[J]. J Fuel Chem Technol,2014,8:905−912. doi: 10.3969/j.issn.0253-2409.2014.08.002
    [13] ZHANG F, XU D, WANG Y, ARGYLE M D, FAN M. CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst[J]. Appl Energy,2015,145:295−305. doi: 10.1016/j.apenergy.2015.01.098
    [14] MONTERROSO R, FAN M, ZHANG F, GAO Y, POPA T, ARGYLE M D, TOWLER B, SUN Q. Effects of an environmentally-friendly, inexpensive composite iron–sodium catalyst on coal gasification[J]. Fuel,2014,116:341−349. doi: 10.1016/j.fuel.2013.08.003
    [15] HE Q, DING L, GONG Y, LI W, WEI J, YU G. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis[J]. Bioresour Technol,2019,280:104−111. doi: 10.1016/j.biortech.2019.01.138
    [16] GUO Q, HUANG Y, HE Q, GONG Y, YU G. Analysis of coal gasification reactivity, kinetics, and mechanism with iron-based catalyst from coal liquefaction[J]. ACS Omega,2021,6(2):1584−1592. doi: 10.1021/acsomega.0c05425
    [17] ELLIS N, MASNADI M S, ROBERTS D G, KOCHANEK M A, ILYUSHECHKIN A Y. Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity[J]. Chem Eng J,2015,279:402−408. doi: 10.1016/j.cej.2015.05.057
    [18] LIANG D, XIE Q, ZHOU H, YANG M, CAO J, ZHANG J. Catalytic effect of alkali and alkaline earth metals in different occurrence modes in Zhundong coals[J]. Asia-Pac J Chem Eng,2018,13(3):e2190. doi: 10.1002/apj.2190
    [19] HE Q, DING L, RAHEEM A, GUO Q, GONG Y, YU G. Kinetics comparison and insight into structure-performance correlation for leached biochar gasification[J]. Chem Eng J,2021,129331.
    [20] JAYARAMAN K, KOK M V, GOKALP I. Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS[J]. Appl Therm Eng,2017,125:1446−1455. doi: 10.1016/j.applthermaleng.2017.07.128
    [21] ZHAO M, RAHEEM A, MEMON Z M, VUPPALADADIYAM A K, JI G. Iso-conversional kinetics of low-lipid micro-algae gasification by air[J]. J Clean Prod,2019,207:618−629. doi: 10.1016/j.jclepro.2018.10.040
    [22] ZHANG K, LI Y, WANG Z, LI Q, WHIDDON R, HE Y, CEN K. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel,2016,185:701−708. doi: 10.1016/j.fuel.2016.08.038
    [23] 路陈, 周志杰, 鑫刘, 帅袁, 王辅臣. 煤快速热解焦的微观结构对其气化活性的影响[J]. 燃料化学学报,2012,40(6):648−654. doi: 10.3969/j.issn.0253-2409.2012.06.002

    LU Chen, ZHOU Zhijie, XIN Liu, SHUAI Yuan, WANG Fuchen. Effect of microstructure of rapid pyrolysis char on its gasification reactivity[J]. J Fuel Chem Technol,2012,40(6):648−654. doi: 10.3969/j.issn.0253-2409.2012.06.002
    [24] HE Y, CHANG C, LI P, HAN X, LI H, FANG S, CHEN J, MA X. Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis[J]. Bioresour Technol,2018,259:294−303. doi: 10.1016/j.biortech.2018.03.043
    [25] 李位位, 黄戒介, 王志青, 段会文, 李俊国, 房倚天. 煤焦CO2气化反应动力学及内扩散对气化过程的影响分析[J]. 燃料化学学报,2016,44(12):1416−1421. doi: 10.3969/j.issn.0253-2409.2016.12.002

    LI Weiwei, HUANG Jiejie, WANG Zhiqing, DUAN Huiwen, LI Junguo, FANG Yitian. Reaction kinetics of coal char gasification with CO2 and the effect of internal diffusion on the gasification[J]. J Fuel Chem Technol,2016,44(12):1416−1421. doi: 10.3969/j.issn.0253-2409.2016.12.002
    [26] MIURA K, SILVESTON P L. Analysis of gas-solid reactions by use of a temperature-programmed reaction technique[J]. Energy Fuels,1989,3(2):243−249. doi: 10.1021/ef00014a020
    [27] IWASZENKO S, HOWANIEC N, SMOLIŃSKI A. Determination of random pore model parameters for underground coal gasification simulation[J]. Energy,2019,166:972−978. doi: 10.1016/j.energy.2018.10.156
    [28] GAO X, ZHANG Y, LI B, ZHAO Y, JIANG B. Determination of the intrinsic reactivities for carbon dioxide gasification of rice husk chars through using random pore model[J]. Bioresour Technol,2016,218:1073−1081. doi: 10.1016/j.biortech.2016.07.057
    [29] KIM R-G, HWANG C-W, JEON C-H. Kinetics of coal char gasification with CO2: Impact of internal/external diffusion at high temperature and elevated pressure[J]. Appl Energy,2014,129:299−307. doi: 10.1016/j.apenergy.2014.05.011
    [30] OLLERO P, SERRERA A, ARJONA R, ALCANTARILLA S. The CO2 gasification kinetics of olive residue[J]. Biomass Bioenergy,2003,24(2):151−161. doi: 10.1016/S0961-9534(02)00091-0
    [31] JIANG L, ZHANG D, LI M, HE J-J, GAO Z-H, ZHOU Y, SUN J-H. Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS[J]. Fuel,2018,222:11−20. doi: 10.1016/j.fuel.2018.02.143
    [32] HE Q, GONG Y, DING L, GUO Q, YOSHIKAWA K, YU G. Reactivity prediction and mechanism analysis of raw and demineralized coal char gasification[J]. Energy,2021,229:120724. doi: 10.1016/j.energy.2021.120724
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  236
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-07-17
  • 网络出版日期:  2021-08-10
  • 刊出日期:  2022-02-12

目录

    /

    返回文章
    返回