留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型循环流化床锅炉与煤粉炉汞排放特性研究

高天 肖日宏 揣兴 熊卓 韦耿 李铁 杨凯 李果 赵永椿 张军营

高天, 肖日宏, 揣兴, 熊卓, 韦耿, 李铁, 杨凯, 李果, 赵永椿, 张军营. 大型循环流化床锅炉与煤粉炉汞排放特性研究[J]. 燃料化学学报(中英文), 2022, 50(3): 275-282. doi: 10.19906/j.cnki.JFCT.2021075
引用本文: 高天, 肖日宏, 揣兴, 熊卓, 韦耿, 李铁, 杨凯, 李果, 赵永椿, 张军营. 大型循环流化床锅炉与煤粉炉汞排放特性研究[J]. 燃料化学学报(中英文), 2022, 50(3): 275-282. doi: 10.19906/j.cnki.JFCT.2021075
GAO Tian, XIAO Ri-hong, CHUAI Xing, XIONG Zhuo, WEI Geng, LI Tie, YANG Kai, LI Guo, ZHAO Yong-chun, ZHANG Jun-ying. Study on mercury emission characteristics of circulating fluidized bed boiler and pulverized coal boiler[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 275-282. doi: 10.19906/j.cnki.JFCT.2021075
Citation: GAO Tian, XIAO Ri-hong, CHUAI Xing, XIONG Zhuo, WEI Geng, LI Tie, YANG Kai, LI Guo, ZHAO Yong-chun, ZHANG Jun-ying. Study on mercury emission characteristics of circulating fluidized bed boiler and pulverized coal boiler[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 275-282. doi: 10.19906/j.cnki.JFCT.2021075

大型循环流化床锅炉与煤粉炉汞排放特性研究

doi: 10.19906/j.cnki.JFCT.2021075
基金项目: 国家重点研发计划(2016YFB0600604),国家自然科学基金(42030807)和湖北省重点研发计划项目(2020BCA076)资助
详细信息
    作者简介:

    高天:gaot_sky@163.com

    通讯作者:

    Tel:13419608698,E-mail:yczhao@hust.edu.cn

  • 中图分类号: X511

Study on mercury emission characteristics of circulating fluidized bed boiler and pulverized coal boiler

Funds: The project was supported by the National R&D Program Project of China (2016YFB0600604), the National Natural Science Fundation of China (42030807), the Key Research and Development Program of Hubei Province (2020BCA076)
  • 摘要: 选取600 MW循环流化床锅炉及1000 MW煤粉炉的电厂进行汞迁移转化及排放特性研究,采用EPA 30B法对烟气汞质量浓度进行采样,同时采集了入炉煤、飞灰、底渣、石灰石、工艺水、脱硫石膏、脱硫废水等固体液体样品进行对比分析。研究了两电厂现有污染物控制装置对汞的协同脱除作用,分析了汞的迁移转化规律。两电厂烟气经过污染物控制装置后,总汞脱除率均达到88%以上,最终排放烟气汞质量浓度分别为1.85和1.10 μg/m3,明显低于中国现行排放标准要求,在现有设备条件下即可实现汞的达标排放。
  • FIG. 1382.  FIG. 1382.

    FIG. 1382.  FIG. 1382.

    图  1  CFB锅炉机组和取样位置示意图

    Figure  1  Schematic diagram of CFB boiler unit and sampling location

    图  2  PC锅炉机组和取样位置示意图

    Figure  2  Schematic diagram of PC boiler unit and sampling location

    图  3  CFB电厂各采样点烟气汞含量分布

    Figure  3  Distribution of mercury concentration in flue gas at each sampling point of CFB power plant

    图  4  PC电厂各采样点烟气汞含量分布

    Figure  4  Distribution of mercury concentration in flue gas at each sampling point of PC power plant

    图  5  SCR进口出口烟气汞含量

    Figure  5  Mercury content in flue gas at SCR inlet and outlet(a): Concentration of mercury in different forms; (b): Percentage of mercury in different forms

    图  6  ESP进口出口烟气汞含量

    Figure  6  Mercury content in flue gas at ESP inlet and outlet (a): Concentration of mercury in different forms; (b): Percentage of mercury in different forms

    图  7  WFGD进口出口烟气汞含量

    Figure  7  Mercury content in flue gas at WFGD inlet and outlet (a): Concentration of mercury in different forms; (b): Percentage of mercury in different forms

    图  8  APCDs进口出口烟气汞含量

    Figure  8  Mercury content in flue gas at APCDs inlet and outlet

    表  1  CFB及PC电厂煤样煤质分析

    Table  1  Coal quality analysis of coal samples in CFB and PC power plants

    Coal sampleProximate analysis/%Ultimate analysis /%Mercury content
    /(ng·g−1
    MAVFCCHONS
    CFB8.9115.0725.3550.6768.064.2225.820.940.96117.40
    PC11.1117.7130.5740.6168.874.7124.201.270.95158.66
    下载: 导出CSV

    表  2  CFB及PC电厂固体液体样汞含量

    Table  2  Mercury concentration of solid and liquid samples in CFB and PC power plants

    Coal samplew/(μg·kg−1)w/(μg·L−1)
    coalbottom ashfly ashlimestonegypsumwaterwaste water
    CFB 117.4 ± 5.67 0.58 ± 0.04 455 ± 5.74 15.28 ± 0.28 0
    PC 158.66 ± 3.48 27.08 ± 0.85 211.70 ± 2.64 0 429.47 ± 8.41 0 0
    下载: 导出CSV

    表  3  CFB电厂汞平衡计算

    Table  3  Calculation of mercury balance in CFB power plant

    SampleMercury input/Mercury output/(mg·h−1Proportion/%
    Mercury input coal 22118.16 98.24
    limestone 396.67 1.76
    water 0 0.00
    total 22514.83 100.00
    Mercury output tail gas 2742.35 11.64
    fly ash 20802.60 88.31
    bottom ash 10.94 0.05
    total 23555.89 100.00
    Mercury mass balance rate 104.62%
    下载: 导出CSV

    表  4  PC电厂汞平衡计算

    Table  4  Calculation of mercury balance in PC power plant

    SampleMercury input/Mercury output/(mg·h−1Proportion/%
    Mercury input coal 37205.77 100.00
    limestone 0 0.00
    water 0 0.00
    total 37205.77 100.00
    Mercury output tail gas 1906.34 4.95
    fly ash 29786.19 77.31
    gypsum 4294.70 11.15
    waste water 0 0.00
    bottom ash 2540.10 6.59
    total 38527.34 100.00
    Mercury mass balance rate 103.55%
    下载: 导出CSV

    表  5  CFB电厂各采样点烟气汞含量

    Table  5  Mercury concentration in flue gas at each sampling point of CFB power plant

    Furnace outletESP outletWFGD outlet
    Hg0/(μg·m−3 2.95 ± 0.32 0.43 ± 0.12 0.82 ± 0.22
    Hg2+/(μg·m−3 1.97 ± 0.22 3.43 ± 0.67 1.03 ± 0.25
    HgP/(μg·m−3 10.56 ± 1.03
    HgT/(μg·m−3 15.48 ± 1.57 3.86 ± 0.79 1.85 ± 0.47
    下载: 导出CSV

    表  6  PC电厂各采样点烟气汞含量

    Table  6  Mercury concentration in flue gas at each sampling point of PC power plant

    Furnace outletSCR outletESP outletWFGD outlet
    Hg0/(μg·m−33.90 ± 0.430.61 ± 0.130.62 ± 0.130.47 ± 0.09
    Hg2+/(μg·m−30.23 ± 0.090.53 ± 0.110.57 ± 0.120.63 ± 0.13
    HgP/(μg·m−35.35 ± 0.5710.57 ± 1.09
    HgT/(μg·m−39.48 ± 1.0911.71 ± 1.331.19 ± 0.251.10 ± 0.22
    下载: 导出CSV
  • [1] 辛凤, 魏书洲, 张军峰, 马斯鸣, 赵永椿, 张军营. 燃煤烟气非碳基吸附剂脱汞研究进展[J]. 燃料化学学报,2020,48(12):1409−1420. doi: 10.3969/j.issn.0253-2409.2020.12.002

    XIN Feng, WEI Shu-zhou, ZHANG Jun-feng, MA Si-ming, ZHAO Yong-chun, ZHANG Jun-ying. Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents[J]. J Fuel Chem Technol,2020,48(12):1409−1420. doi: 10.3969/j.issn.0253-2409.2020.12.002
    [2] TIAN H Z, ZHU C Y, GAO J J, CHENG K, НAO J M, WANG K, HUA S B, WANG Y, ZHOU J R. Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies[J]. Atmos Chem Phys,2015,15(8):12107−12166.
    [3] WU Q, WANG S, LIU K, HAO J. Emission-limit-oriented strategy to control atmospheric mercury emissions in coal-fired power plants toward the implementation of the minamata convention[J]. Environ Sci Technol,2018,52(19):11087−11093. doi: 10.1021/acs.est.8b02250
    [4] 牛丽丽, 徐超, 刘维屏. 中国燃煤汞排放及活性炭脱汞技术[J]. 环境科学与技术,2012,35(9):45−55. doi: 10.3969/j.issn.1003-6504.2012.09.011

    NIU Li-li, XU Chao, LIU Wei-ping. Overviews of mercury emission from coal combustion in China and technology of mercury-removing by activated carbon[J]. Environ Sci Technol,2012,35(9):45−55. doi: 10.3969/j.issn.1003-6504.2012.09.011
    [5] 徐丽梅玫, 李彩亭, 夏扎旦·阿不力克木, 高招. 利用现有设备和技术控制燃煤烟气汞污染研究进展[J]. 环境工程,2010,28(3):77−80.

    XU Li-meimei, LI Cai-ting, Xazadam·Ablikin, GAO Zhao. Development of mercury pollution control of flue gas with existing treatment eouipments and technioues in coal-fired power plant[J]. Environ Eng,2010,28(3):77−80.
    [6] 刘飞, 乔少华, 晏乃强, 瞿赞, 贾金平. 燃煤烟气中零价汞控制技术研究进展[J]. 环境科学与技术,2012,35(6):58−63. doi: 10.3969/j.issn.1003-6504.2012.06.014

    LIU Fei, QIAO Shao-hua, YAN Nai-qiang, QU Zan, JIA Jin-ping. Progress of elemental mercury control from coal-fired flue gas[J]. Environ Sci Technol,2012,35(6):58−63. doi: 10.3969/j.issn.1003-6504.2012.06.014
    [7] 刘轩, 苏银皎, 赵元财, 滕阳, 张锴, 张永红. 电厂入炉煤及其副产物中砷的分布和富集特性[J]. 燃料化学学报,2020,48(12):1513−1519. doi: 10.3969/j.issn.0253-2409.2020.12.013

    LIU Xuan, SU Yin-jiao, ZHAO Yuan-cai, TENG Yang, ZHANG Kai, ZHANG Yong-hong. Distribution and enrichment characteristics of arsenic in feed-coal and by-products of coal-fired power plants[J]. J Fuel Chem Technol,2020,48(12):1513−1519. doi: 10.3969/j.issn.0253-2409.2020.12.013
    [8] 唐念, 盘思伟. 大型煤粉锅炉汞的排放特性和迁移规律研究[J]. 燃料化学学报,2013,41(4):484−490. doi: 10.3969/j.issn.0253-2409.2013.04.015

    TANG Nian, PAN Si-wei. Study on mercury emission and migration from large-scale pulverized coal-fired boiler[J]. J Fuel Chem Technol,2013,41(4):484−490. doi: 10.3969/j.issn.0253-2409.2013.04.015
    [9] CAO Y, GAO Z, ZHU J, WANG Q, HUANG Y, CHIU C, PARKER B, CHU P, PAN W. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal[J]. Environ Sci Technol,2008,42(1):256−261. doi: 10.1021/es071281e
    [10] 王铮, 薛建明, 许月阳, 王宏亮, 刘珺. 选择性催化还原协同控制燃煤烟气中汞排放效果影响因素研究[J]. 中国电机工程学报,2013,33(14):32−37.

    WANG Zheng, XUE Jian-ming, XU Yue-yang, WANG Hong-liang, LIU Jun. Research on influencing factors of SCR's cooperative control in mercury emissions from coal-fired flue[J]. Proc CSEE,2013,33(14):32−37.
    [11] 许月阳, 薛建明, 王宏亮, 李兵, 管一明, 刘珺. 燃煤烟气常规污染物净化设施协同控制汞的研究[J]. 中国电机工程学报,2014,34(23):3924−3931.

    XU Yue-yang, XUE Jian-ming, WANG Hong-laing, LI Bing, GUAN Yi-ming, LIU Jun. Research on mercury collaborative control by conventional pollutants purification facilities of coal-fired power plants[J]. Proc CSEE,2014,34(23):3924−3931.
    [12] LEE C W, SRIVASTAVA R K, GHORISHI S B HASTINGS T W, STEVENS F M. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions[J]. J Air Waste Manage,2004,54(12):1560−1566. doi: 10.1080/10473289.2004.10471009
    [13] 陈磊, 段钰锋, 赵士林, 李雅宁. 350 MW超低排放燃煤电厂污染物控制装置对汞的协同脱除[J]. 热能动力工程,2020,35(2):187−193.

    CHEN Lei, DUAN Yu-feng, ZHAO Shi-lin, LI Ya-ning. Mercury Co-removal by the air pollutant control devices in a 350 MW ultra-low emission coal-fired power plant[J]. J Eng Therm Energy Power,2020,35(2):187−193.
    [14] LI H, LI Y, WU C, ZHANG J. Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas[J]. Chem Eng J,2011,169(1/3):186−193. doi: 10.1016/j.cej.2011.03.003
    [15] 睢辉, 张梦泽, 董勇, 王鹏. 燃煤烟气中单质汞吸附与氧化机理研究进展[J]. 化工进展,2014,33(6):1582−1588.

    SUI Hui, ZHANG Meng-ze, DONG Yong, WANG Peng. Research progress of adsorption and oxidation mechanism of elemental mercury from coal-fired flue gas[J]. Chem Ind Eng Prog,2014,33(6):1582−1588.
    [16] 王晨平, 段钰锋, 赵士林, 李雅宁, 朱纯, 佘敏, 刘猛, 韦红旗, 王双群. 燃烧温度对煤中汞析出特性及形态分布的影响[J]. 化工进展,2017,36(5):1899−1905.

    WANG Chen-ping, DUAN Yu-feng, ZHAO Shi-lin, LI Ya-ning, ZHU Chun, SHE Min, LIU Meng, WEI Hong-qi, WANG Shuang-qun. Effects of coal combustion temperature on mercury emission and speciation[J]. Chem Ind Eng Prog,2017,36(5):1899−1905.
    [17] ZHOU Y, YANG J, DONG L, GAO T, LI Z, JI Y, ZHAO Y, PAN S, ZHANG J, ZHENG C. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres from fly ash. Part 5. Industrial scale studies at a 50MWth coal-fired power plant[J]. Fuel,2020,266:1−8.
    [18] PUDASAINEE D, KIM J, YOON Y, SEO YC. Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CS-ESP and wet FGD[J]. Fuel,2012,93(1):312−318.
    [19] LIU H, CHEN Y, GAO T, YANG G, ZHANG J. Elemental mercury removal from flue gas using modified tonstein: Performance of adsorbent injection at an entrained flow reactor system and 50-MW coal-fired power plant in China[J]. J Clean Prod,2020,287:124998.
    [20] 王运军, 段钰锋, 杨立国, 江贻满, 吴成军, 王乾, 杨详花. 燃煤电站布袋除尘器和静电除尘器脱汞性能比较[J]. 燃料化学学报,2008,36(1):23−29. doi: 10.3969/j.issn.0253-2409.2008.01.005

    WANG Yun-jun, DUAN Yu-feng, YANG Li-guo, JIANG Yi-man, WU Cheng-jun, WANG Qian, YANG Xiang-hua. Comparison of mercury removal characteristic between fabric filter and electrostatic precipitators of coal-fired power plants[J]. J Fuel Chem Technol,2008,36(1):23−29. doi: 10.3969/j.issn.0253-2409.2008.01.005
    [21] YOKOYAMA T, ASAKURA K, MATSUDA H, ITO S, NODA N. Mercury emissions from a coal-fired power plant in Japan[J]. Sci Total Environ,2000,259(1/3):97−103. doi: 10.1016/S0048-9697(00)00552-0
    [22] FTHENAKIS V M, LIPFERT F W, MOSKOWITZ P D. An assessment of mercury emissions and health risks from a coal-fired power plant[J]. J Hazard Mater,1995,44(2/3):267−283. doi: 10.1016/0304-3894(95)00058-3
    [23] 杨宏旻, KUN-LEI LIU, YAN CAO, PAN Wei-ping. 电站烟气脱硫装置的脱汞特性试验[J]. 动力工程,2006,(4):554−557.

    YANG Hong-min, KUN-LEI LIU, YAN CAO, PAN Wei-ping. Demercurization property of flue gas desulfurization installations in power plants[J]. J Chin Soc Power Eng,2006,(4):554−557.
    [24] 胡长兴, 周劲松, 何胜, 张乐, 郑剑铭, 骆仲泱, 岑可法. 静电除尘器和湿法烟气脱硫装置对烟气汞形态的影响与控制[J]. 动力工程,2009,29(4):400−404.

    HU Chang-xing, ZHOU Jin-song, HE Sheng, ZHANG Le ZHENG Jian-ming, LUO Zhong-yang, CEN Ke-fa. Influence and control of electrostatic precipitators and wet flue gas desulfurization systems on the speciation of mercury in flue gas[J]. J Chin Soc Power Eng,2009,29(4):400−404.
    [25] 李志超, 段钰锋, 王运军, 黄治军, 孟素丽, 沈解忠. 300 MW燃煤电厂ESP和WFGD对烟气汞的脱除特性[J]. 燃料化学学报,2013,41(4):491−498. doi: 10.3969/j.issn.0253-2409.2013.04.016

    LI Zhi-chao, DUAN Yu-feng, WANG Yun-jun, HUANG Zhi-jun, MENG Su-li, SHEN Jie-zhong. Mercury removal by ESP and WFGD in a 300 MW coal-fired power plant[J]. J Fuel Chem Technol,2013,41(4):491−498. doi: 10.3969/j.issn.0253-2409.2013.04.016
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  557
  • HTML全文浏览量:  132
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 修回日期:  2021-08-01
  • 网络出版日期:  2021-08-20
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回