留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤沥青基三维多孔炭作为超级电容器电极材料的电化学性能

郭明聪 刘书林 和凤祥 宋天永 李强生 蔡新辉 胡博

郭明聪, 刘书林, 和凤祥, 宋天永, 李强生, 蔡新辉, 胡博. 煤沥青基三维多孔炭作为超级电容器电极材料的电化学性能[J]. 燃料化学学报(中英文), 2021, 49(11): 1648-1655. doi: 10.19906/j.cnki.JFCT.2021080
引用本文: 郭明聪, 刘书林, 和凤祥, 宋天永, 李强生, 蔡新辉, 胡博. 煤沥青基三维多孔炭作为超级电容器电极材料的电化学性能[J]. 燃料化学学报(中英文), 2021, 49(11): 1648-1655. doi: 10.19906/j.cnki.JFCT.2021080
GUO Ming-cong, LIU Shu-lin,  HE  Feng-xiang, SONG Tian-yong, LI Qiang-sheng, CAI Xin-hui, HU Bo. Electrochemical properties of coal pitch-based three-dimensional porous carbon as electrode materials for supercapacitors[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1648-1655. doi: 10.19906/j.cnki.JFCT.2021080
Citation: GUO Ming-cong, LIU Shu-lin,  HE  Feng-xiang, SONG Tian-yong, LI Qiang-sheng, CAI Xin-hui, HU Bo. Electrochemical properties of coal pitch-based three-dimensional porous carbon as electrode materials for supercapacitors[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1648-1655. doi: 10.19906/j.cnki.JFCT.2021080

煤沥青基三维多孔炭作为超级电容器电极材料的电化学性能

doi: 10.19906/j.cnki.JFCT.2021080
基金项目: 辽宁省自然科学基金(2019-ZD-0895),辽宁省重点研发计划指导计划(2018304002),中央引导地方科技发展专项资金(2021JH6/10500019)和2020年度山东省重点研发计划(重大科技创新工程)(2020CXGC010309)资助
详细信息
    作者简介:

    郭明聪:guomingcong@163.com

    通讯作者:

    Tel: 13889750612,E-mail: 77265463@qq.com

  • 中图分类号: O59

Electrochemical properties of coal pitch-based three-dimensional porous carbon as electrode materials for supercapacitors

Funds: The project was supported by the Natural Science Foundation of Liaoning Province (2019-ZD-0895), Key Research and Development Program of Liaoning Province (2018304002), the Central Government Guided Local Special Funds for Scientific and Technological Development (2021JH6/10500019), the Project of Shandong Provincial Key Research and Development Program (Major Science and Technology Innovation Project) in 2020 (2020CXGC010309)
  • 摘要: 以廉价的煤沥青为原料,加入造孔剂,依次经过混合工艺、空气氧化稳定化工艺、炭化工艺得到三维骨架结构的炭材料,再经过水蒸气活化,得到高比表面积的多孔炭材料。通过热重分析和元素分析研究沥青和空气氧化稳定化、炭化后样品的热反应特性和组成结构的变化;利用扫描电子显微镜、比表面积分析仪和电化学工作站等对活化后样品表面形貌、孔结构和电化学性能进行表征。水蒸气活化后的多孔炭比表面积可达到1638 m2/g。以此多孔炭为超级电容器电极材料,制备的水系双电层电容器循环性能良好,1 A/g电流密度下比电容可达252 F/g,经过10000次循环后,比容量仍能保持97.3%。因此,该方法制备的多孔炭材料价格低廉、化学稳定性好,可作为一种理想的超级电容器电极材料。
  • FIG. 1061.  FIG. 1061.

    FIG. 1061.  FIG. 1061.

    图  1  CTP、HCTP、OCTP的TG和DTG曲线

    Figure  1  TG and DTG curves of CTP, HCTP and OCTP

    图  2  CTP、HCTP、OCTP、CBM的FT-IR谱图

    Figure  2  FT-IR spectra of CTP, HCTP, OCTP and CBM

    图  3  样品的扫描电镜照片 (a) CTP、(b) HCTP、(c) OCTP、(d) CBM、(e) PCM、(f) (e)的放大图像

    Figure  3  SEM images of (a) CTP, (b) HCTP, (c) OCTP, (d) CBM, (e) PCM and (f) the large image of (e)

    图  4  PCM的TEM照片 (a) PCM、(b) (a)的放大图像

    Figure  4  TEM images of (a) PCM and (b) the large image of (a)

    图  5  (a)BPCM和(b)PCM的N2吸附-脱附等温曲线,(c)BPCM和(d)PCM的BJH孔径分布

    Figure  5  Nitrogen adsorption-desorption isotherms of (a) BPCM and (b) PCM electrodes

    BJH pore size distributions of (c) BPCM and (d) PCM electrodes

    图  6  (a)BPCM和(b)PCM在不同扫描速率下的循环伏安曲线,(c)BPCM和(d)PCM在不同电流密度下的恒流充放电曲线,(e)BPCM和PCM电极的能量/功率密度图,(f)BPCM和PCM电极的循环寿命测试

    Figure  6  CV curves of (a) BPCM and (b) PCM electrodes at different scanning rates, charge/discharge curves of (c) BPCM and (d) PCM electrodes at different current densities, (e) ragone plots of BPCM and PCM electrodes,(f) Cycle life tests of BPCM and PCM electrodes

    表  1  CTP的基本性质分析

    Table  1  Basic analysis of CTP

    SampleSP/℃Content w/%Element composition /%
    CvQITIashCHNSO*
    CTP119.458.560.1621.40trace91.054.371.060.483.04
    *: by difference
    下载: 导出CSV

    表  2  氧化反应前后煤沥青性质

    Table  2  Analysis of properties of CTP before and after oxidation reaction

    SampleSP/℃Ash/%Element composition /%
    CHNSO
    CTP119.4trace amount91.054.371.060.483.04
    HCTP260trace amount93.644.011.050.480.82
    OCTP280trace amount87.693.270.980.377.69
    下载: 导出CSV

    表  3  不同电流密度下BPCM和PCM的质量比电容

    Table  3  Specific capacitances of BPCM and PCM electrodes at different current densities (F/g)

    Sample0.5 A/g1 A/g2 A/g
    BPCM82.54152.94146.06
    PCM290.13252.64216.52
    下载: 导出CSV
  • [1] YANG Z F, TIAN J R, YIN Z F, CUI C J QIAN W Z, WEI F. Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review[J]. Carbon,2019,141:467−480. doi: 10.1016/j.carbon.2018.10.010
    [2] YIN J, ZHANG W, ALHEBSHI N A. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods,2020,4(3):1900853. doi: 10.1002/smtd.201900853
    [3] CHEN T, DAI L. Carbon nanomaterials for high-performance supercapacitors[J]. Mater Today,2013,16(7-8):272−280. doi: 10.1016/j.mattod.2013.07.002
    [4] CHEN X, PAUL R, DAI L. Carbon-based supercapacitors for efficient energy storage[J]. Natl Sci Rev,2017,4(3):453−489. doi: 10.1093/nsr/nwx009
    [5] STAAF L G H, LUNDGREN P, ENOKSSON P. Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems[J]. Nano Energy,2014,9:128−141. doi: 10.1016/j.nanoen.2014.06.028
    [6] PORTET C, TABERNA P L, SIMON P, FLAHAUT E, LABERTY-ROBERT C. High power density electrodes for carbon supercapacitor applications[J]. Electrochim Acta,2005,50(20):4174−4181. doi: 10.1016/j.electacta.2005.01.038
    [7] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chem Soc Rev,2009,38(9):2520−2531. doi: 10.1039/b813846j
    [8] WANG G, ZHANG L, ZHANG J. A review of electrode materials for electrochemical supercapacitors[J]. Chem Soc Rev,2012,41(2):797−828. doi: 10.1039/C1CS15060J
    [9] SAIKIA B K, BENOY S M, BORA M, TAMULY J, PANDEY M, BHATTACHARYA D. A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials[J]. Fuel,2020,282(15):118796.
    [10] BORCHARDT L, OSCHATZ M, KASKEL S. Tailoring porosity in carbon materials for supercapacitor applications[J]. Mater Horizons,2014,1(2):157−168. doi: 10.1039/C3MH00112A
    [11] XIE K, QIN X T, WANG X Z, WANG Y N, TAO H S, WU Q, YANG L J HU Z. Carbon nanocages as supercapacitor electrode materials[J]. Adv Mater,2012,24(3):347−352. doi: 10.1002/adma.201103872
    [12] XIE L, SUN G, SU F. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications[J]. J Mater Chem A,2016,4(5):1637−1646. doi: 10.1039/C5TA09043A
    [13] JIANG H, MA J, LI C Z. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes[J]. Adv Mater,2012,24(30):4197−4202. doi: 10.1002/adma.201104942
    [14] LI H Q, LUO J Y, ZHOU X F. An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications[J]. J Electrochem Soc,2007,154(8):A731. doi: 10.1149/1.2741198
    [15] 刘海晶. 电化学超级电容器多孔碳电极材料的研究[D]. 上海: 复旦大学, 2011.

    LIU Hai-jing. Study on porous carbon electrode materials for electrochemical supercapacitors[D]. Shanghai: Fudan University, 2011.
    [16] 席云龙. 超级电容器用新型聚苯胺/二氧化锰/多孔碳电极材料的制备与研究[D]. 吉林: 吉林大学, 2017.

    XI Yun-long. Preparation and study of novel polyaniline / manganese dioxide / porous carbon electrode materials for supercapacitors[D]. Jilin: Jilin University, 2017.
    [17] LE VAN K, THI T T L. Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor[J]. Prog Nat Sci-Mater,2014,24(3):191−198. doi: 10.1016/j.pnsc.2014.05.012
    [18] BABEL K, JUREWICZ K. KOH activated carbon fabrics as supercapacitor material[J]. J Phys Chem Solids,2004,65(2/3):275−280. doi: 10.1016/j.jpcs.2003.08.023
    [19] JÄNES A, KURIG H, LUST E. Characterisation of activated nanoporous carbon for supercapacitor electrode materials[J]. Carbon,2007,45(6):1226−1233. doi: 10.1016/j.carbon.2007.01.024
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  2433
  • HTML全文浏览量:  184
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-27
  • 修回日期:  2021-08-31
  • 网络出版日期:  2021-09-10
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回