留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丝光沸石催化二甲醚羰基化研究进展

赵生迎 耿海伦 徐冰 武雪梅 谭明慧 杨国辉 谭猗生

赵生迎, 耿海伦, 徐冰, 武雪梅, 谭明慧, 杨国辉, 谭猗生. 丝光沸石催化二甲醚羰基化研究进展[J]. 燃料化学学报(中英文), 2022, 50(2): 166-179. doi: 10.19906/j.cnki.JFCT.2021083
引用本文: 赵生迎, 耿海伦, 徐冰, 武雪梅, 谭明慧, 杨国辉, 谭猗生. 丝光沸石催化二甲醚羰基化研究进展[J]. 燃料化学学报(中英文), 2022, 50(2): 166-179. doi: 10.19906/j.cnki.JFCT.2021083
ZHAO Sheng-ying, GENG Hai-lun, XU Bing, WU Xue-mei, TAN Ming-hui, YANG Guo-hui, TAN Yi-sheng. Research progress on mordenite catalyzed carbonylation of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 166-179. doi: 10.19906/j.cnki.JFCT.2021083
Citation: ZHAO Sheng-ying, GENG Hai-lun, XU Bing, WU Xue-mei, TAN Ming-hui, YANG Guo-hui, TAN Yi-sheng. Research progress on mordenite catalyzed carbonylation of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 166-179. doi: 10.19906/j.cnki.JFCT.2021083

丝光沸石催化二甲醚羰基化研究进展

doi: 10.19906/j.cnki.JFCT.2021083
基金项目: 国家自然科学基金(21978312,21908235),中国科学院前沿科学重点研究项目(QYZDB-SSW-JSC043),中国科学院国际伙伴计划(122214KYSB20170007),山西省留学回国人员科技活动择优资助项目和山西省省筹资金资助回国留学人员科研项目资助
详细信息
    作者简介:

    赵生迎:zhaoshengying19@mails.ucas.ac.cn

    通讯作者:

    Tel:0351-4044287,E-mail: yanggh@sxicc.ac.cn

  • 中图分类号: O643.36

Research progress on mordenite catalyzed carbonylation of dimethyl ether

Funds: The project was supported by the National Natural Science Foundation of China (21978312, 21908235), the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-JSC043), International Partnership Program of Chinese Academy of Sciences (122214KYSB20170007), Research Project Supported by Shanxi Scholarship Council of China and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province
  • 摘要: 二甲醚羰基化反应是在二甲醚分子中定向插入一氧化碳的重要增碳反应,在工业生产中具有重要意义。近年来,研究发现廉价的丝光沸石可催化二甲醚羰基化反应,且具有较高的反应活性和十分优异的羰基化产物选择性,因此,得到了广泛的研究。本文对丝光沸石催化二甲醚羰基化的研究进行综述,介绍了羰基化反应的机理,并总结丝光沸石内部酸性位点调控的各种方法以及对羰基化反应的影响。
  • FIG. 1263.  FIG. 1263.

    FIG. 1263.  FIG. 1263.

    图  1  MOR在[001]方向的骨架结构(a)和孔道体系示意图(b)[13, 22]

    Figure  1  Framework structure viewed along the [001] direction (a) and schematic diagram of the channel system (b) of MOR zeolite[13, 22]

    (with permission from MSA Publication)

    图  2  沸石催化甲醇羰基化的反应路径[23]

    Figure  2  Reaction path of methanol carbonylation catalyzed by zeolite[23]

    (with permission from CSJ Publication)

    图  3  DME在酸性沸石上发生羰基化反应机理[24]

    Figure  3  Proposed elementary steps for carbonylation of dimethyl ether on acidic zeolites[24]

    (with permission from Elsevier)

    图  4  (a)在H-MOR催化剂上DME和CO的分压对MA生成速率的影响;(b)水对DME羰基化反应的影响[4, 26]

    Figure  4  (a) Effects of DME (squares: 0.5 MPa CO, 438 K; triangles: 0.5 kPa H2O, 0.5 MPa CO, 438 K) and CO (diamonds: 2–16 kPa DME, 438 K) concentration on the rate of methyl acetate formation on H-MOR (Si/Al=10:1); (b) influence of water on the DME carbonylation catalytic performance[4, 26]

    ((a): with permission from Wiley Publication; (b): with permission from RSC Publication)

    图  5  在分子筛不同孔道中Brønsted酸性位点数量与MA生成速率的关系图[7]

    Figure  5  DME carbonylation rates per unit mass plotted against the number of H+ sites per unit mass in 8-MR channels of MOR (▲) and FER (◆) and 12-MR channels of MOR (●) Inset shows DME carbonylation rates plotted against the total number of H+ sites in these samples (■) [7]

    (with permission from ACS Publication)

    图  6  MOR的T3-O33位置(a)和8-MR道中其他位置(b)的Oframework-CH3键和孔道轴的相对取向示意图;H-MOR在c轴(c)和b轴(d)方向的骨架结构[34]

    Figure  6  (a), (b) Schematic representation of the relative orientation of the Oframework−CH3 bond and the channel axis at the T3-O33 position of MOR and any other position in an 8-MR channel; (c), (d) Structure of MOR in the (top) c and (bottom) b directions[34]

    (with permission from ACS Publication)

    图  7  MOR催化DME羰基化反应中主要结焦途径[38]

    Figure  7  Main coking pathway in the carbonylation of the DME reaction over MOR[38]

    (with permission from ACS Publication)

    图  8  原位 13C MAS NMR测量 13CH3OH在 13CO/13CH3OH反应中转化为乙酰基[50]

    Figure  8  Conversion of 13CH3OH to acetyls in the 13CO/13CH3OH reaction at 200 ℃ over H-Mordenite (H-MOR) and Cu-Mordenite (CuH-MOR), as measured by in situ 13C MAS NMR spectroscopy[50]

    (with permission from Wiley Publication)

    图  9  不同催化剂反应前后的TEM照片[52]

    Figure  9  TEM images of the fresh calcined and spent catalysts[52]

    (with permission from ACS Publication)

    图  10  (a)Co2+在MOR中的催化反应过程;(b)MOR中Co2+可能发生交换的位点[58, 59]

    Figure  10  (a) Catalytic reaction process of Co2+ in MOR; (b) Possible positions that could be exchanged by metal cations in HMOR[58, 59]

    ((a): with permission from RSC Publication; (b): with permission from ACS Publication)

    图  11  DME羰基化在不同催化剂上的转化率和MA的选择性[27]

    Figure  11  Conversion of DME and selectivities for MA during DME carbonylation over the HMOR-6 and Py-HMOR-6 catalysts. Reaction conditions: 473 K, 5% DME-50% CO-2.5% N2-42.5% He, 1250 mL/(g·h), 1.0 MPa[27]

    (with permission from Elsevier)

    图  12  (a)MPD和MPD焙烧去除后的O位点变化;(b)不同环胺作有机模板剂合成的MOR时,8-MR孔道中的Brønsted酸浓度与MA收率的关系图[76]

    Figure  12  (a) Diagrams of M-MPD and OSDA removed M-MPD; (b) Correlation between the STYMA and the number of Brønsted acid sites in 8-MR[76]

    (with permission from RSC Publication)

    图  13  传统HMOR(a),(b)和纳米MOR-N(c),(d)催化剂的FE-SEM(a),(b),(c)和TEM(d)照片[83]

    Figure  13  FE-SEM (a), (b), (c) and TEM (d) images of the HMOR-C (a), (b) and HMOR-N (c), (d) catalysts[83]

    (with permission from Elsevier)

    图  14  利用NH4F在不同温度下刻蚀MOR的TEM照片[93]

    Figure  14  TEM images of etching MOR with NH4F at different temperatures[93]

    (with permission from ACS Publication)

    图  15  利用NH4F在不同温度下刻蚀MOR的TEM照片[93]

    Figure  15  TEM images of etching MOR with NH4F at different temperatures[93]

    (with permission from ACS Publication)

  • [1] SUNLEY G J, WATSON D J. High productivity methanol carbonylation catalysis using iridium - The Cativa (TM) process for the manufacture of acetic acid[J]. Catal Today,2000,58(4):293−307. doi: 10.1016/S0920-5861(00)00263-7
    [2] 王玉和, 贺德华, 徐柏庆. 甲醇羰基化制乙酸[J]. 化学进展,2003,(3):215−221. doi: 10.3321/j.issn:1005-281X.2003.03.007

    WANG Yu-he, HE De-hua, XU Bo-qing. Studies of producing acetic acid by carbonylation of methanol[J]. Prog Chem,2003,(3):215−221. doi: 10.3321/j.issn:1005-281X.2003.03.007
    [3] WEGMAN R W. Vapor-phase carbonylation of methanol or dimethyl ether with metal-ion exchanged heteropoly acid catalysts[J]. J Chem Soc Chem Comm,1994,(8):947−948. doi: 10.1039/c39940000947
    [4] CHEUNG P, BHAN A, SUNLEY G J, IGLESIA E. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angew Chem Int Ed Eng,2006,45(10):1617−1620. doi: 10.1002/anie.200503898
    [5] SAN X G, ZHANG Y, SHEN W J, TSUBAKI N. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst[J]. Energy Fues,2009,23(5/6):2843−2844.
    [6] LI X, SAN X, ZHANG Y, ICHII T, MENG M, TAN Y, TSUBAKI N. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-mordenite and Cu/ZnO catalysts[J]. ChemSusChem,2010,3(10):1192−1199. doi: 10.1002/cssc.201000109
    [7] BHAN A, ALLIAN A D, SUNLEY G J, LAW D J, IGLESIA E. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. J Am Chem Soc,2007,129(16):4919−4924. doi: 10.1021/ja070094d
    [8] FENG X, YAO J, LI H, FANG Y, YONEYAMA Y, YANG G, TSUBAKI N. A brand new zeolite catalyst for carbonylation reaction[J]. Chem Commun,2019,55(8):1048−1051. doi: 10.1039/C8CC08411D
    [9] LUSARDI M, CHEN T T, KALE M, KANG J H, NEUROCK M, DAVIS M E. Carbonylation of dimethyl ether to methyl acetate over SSZ-13[J]. ACS Catal,2019,10(1):842−851.
    [10] JUNG H S, XUAN N T, BAE J W. Carbonylation of dimethyl ether on ferrierite zeolite: Effects of crystallinity to coke distribution and deactivation[J]. Microporous Mesoporous Mater,2021,310:110669.
    [11] HAM H, JUNG H S, KIM H S, KIM J, CHO S J, LEE W B, PARK M J, BAE J W. Gas-phase carbonylation of dimethyl ether on the stable seed-derived ferrierite[J]. ACS Catal,2020,10(9):5135−5146. doi: 10.1021/acscatal.9b05144
    [12] SANO T, WAKABAYASHI S, OUMI Y, UOZUMI T. Synthesis of large mordenite crystals in the presence of aliphatic alcohol[J]. Microporous Mesoporous Mater,2001,46(1):67−74. doi: 10.1016/S1387-1811(01)00285-2
    [13] SIMONCIC P, ARMBRUSTER T. Peculiarity and defect structure of the natural and synthetic zeolite mordenite: A single-crystal X-ray study[J]. Am Mineral,2004,89(2/3):421−431. doi: 10.2138/am-2004-2-323
    [14] MEIER W Μ. The crystal structure of mordenite (ptilolite)[J]. Z Krist-Cryst Mater,1961,115(1/6):439−450. doi: 10.1524/zkri.1961.115.16.439
    [15] FERNANDES L D, MONTEIRO J L F, SOUSA-AGUIAR E F, MARTINEZ A, CORMA A. Ethylbenzene hydroisomerization over bifunctional zeolite based catalysts: The influence of framework and extraframework composition and zeolite structure[J]. J Catal,1998,177(2):363−377. doi: 10.1006/jcat.1998.2111
    [16] TSAI T C, CHEN W H, LAI C S, LIU S B, WANG I, KU C S. Kinetics of toluene disproportionation over fresh and coked H-mordenite[J]. Catal Today,2004,97(4):297−302. doi: 10.1016/j.cattod.2004.07.013
    [17] LU K, HUANG J, REN L, LI C, GUAN Y, HU B, XU H, JIANG J, MA Y, WU P. High ethylene selectivity in methanol-to-olefin (MTO) reaction over MOR-zeolite nanosheets[J]. Angew Chem Int Ed Eng,2020,59(15):6258−6262. doi: 10.1002/anie.202000269
    [18] ISSA H, TOUFAILY J, HAMIEH T, COMPAROT J D, SACHSE A, PINARD L. Mordenite etching in pyridine: Textural and chemical properties rationalized by toluene disproportionation and n-hexane cracking[J]. J Catal,2019,374:409−421. doi: 10.1016/j.jcat.2019.05.004
    [19] BLAY V, LOUIS B, MIRAVALLES R, YOKOI T, PECCATIELLO K A, CLOUGH M, YILMAZ B. Engineering zeolites for catalytic cracking to light olefins[J]. ACS Catal,2017,7(10):6542−6566. doi: 10.1021/acscatal.7b02011
    [20] WULFERS M J, JENTOFT F C. Identification of carbonaceous deposits formed on H-mordenite during alkane isomerization[J]. J Catal,2013,307:204−213. doi: 10.1016/j.jcat.2013.07.011
    [21] SEGAWA K, SHIMURA T. Effect of dealumination of mordenite by acid-leaching for selective synthesis of ethylenediamine from ethanolamine[J]. Appl Catal A: Gen,2000,194:309−317.
    [22] 马猛. 丝光沸石形貌调控及二甲醚羰基化反应研究[D]. 北京: 中国科学院大学, 2018.

    MA Meng. Shape control of mordenite and its catalytic performance for dimethyl carbonyl carbonylation[D]. Beijing: University of Chinese Academy of Sciences, 2018.
    [23] FUJIMOTO K, SHIKADA T, OMATA K, TOMINAGA H. Vapor-phase carbonylation of methanol with solid acid catalysts[J]. Chem Lett,1984,(12):2047−2050.
    [24] CHEUNG P, BHAN A, SUNLEY G J, LAW D J, IGLESIA E. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. J Catal,2007,245(1):110−123. doi: 10.1016/j.jcat.2006.09.020
    [25] LIU Z Q, YI X F, WANG G R, TANG X M, LI G C, HUANG L, ZHENG A M. Roles of 8-ring and 12-ring channels in mordenite for carbonylation reaction: From the perspective of molecular adsorption and diffusion[J]. J Catal,2019,369:335−344. doi: 10.1016/j.jcat.2018.11.024
    [26] LIU S P, LIU H C, MA X G, LIU Y, ZHU W L, LIU Z M. Identifying and controlling the acid site distributions in mordenite zeolite for dimethyl ether carbonylation reaction by means of selective ion-exchange[J]. Catal Sci Technol,2020,10(14):4663−4672. doi: 10.1039/D0CY00125B
    [27] LIU J L, XUE H F, HUANG X M, WU P H, HUANG S J, LIU S B, SHEN W J. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chin J Catal,2010,31(7):729−738. doi: 10.1016/S1872-2067(09)60081-4
    [28] XUE H F, HUANG X M, ZHAN E S, MA M, SHEN W J. Selective dealumination of mordenite for enhancing its stability in dimethyl ether carbonylation[J]. Catal Commun,2013,37:75−79. doi: 10.1016/j.catcom.2013.03.033
    [29] ZHAN H M, HUANG S Y, LI Y, LV J, WANG S P, MA X B. Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR[J]. Catal Sci Technol,2015,5(9):4378−4389. doi: 10.1039/C5CY00460H
    [30] LU P, CHEN Q J, YANG G H, TAN L, FENG X B, YAO J, YONEYAMA Y, TSUBAKI N. Space-confined self-regulation mechanism from a capsule catalyst to realize an ethanol direct synthesis strategy[J]. ACS Catal,2020,10(2):1366−1374. doi: 10.1021/acscatal.9b02891
    [31] 周慧. 分子筛催化二甲醚羰基化反应制备乙酸甲酯研究[D]. 北京: 中国科学院大学, 2016.

    ZHOU Hui. Studies on carbonylation of dimethyl ether catalyzed by zeolites[D]. Beijing: University of Chinese Academy of Sciences, 2016.
    [32] BORONAT M, MARTINEZ C, CORMA A. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite[J]. Phys Chem Chem Phys,2011,13(7):2603−2612. doi: 10.1039/c0cp01996h
    [33] ZHOU W, KANG J, CHENG K, HE S, SHI J, ZHOU C, ZHANG Q, CHEN J, PENG L, CHEN M, WANG Y. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Angew Chem Int Ed Eng,2018,57(37):12012−12016. doi: 10.1002/anie.201807113
    [34] BORONAT M, MARTINEZ-SANCHEZ C, LAW D, CORMA A. Enzyme-like specificity in zeolites: A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. J Am Chem Soc,2008,130(48):16316−16323. doi: 10.1021/ja805607m
    [35] LI B J, XU J, HAN B, WANG X M, QI G D, ZHANG Z F, WANG C, DENG F. Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy[J]. J Phys Chem C,2013,117(11):5840−5847. doi: 10.1021/jp400331m
    [36] HE T, REN P, LIU X, XU S, HAN X, BAO X. Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy[J]. Chem Commun,2015,51(94):16868−16870. doi: 10.1039/C5CC07201H
    [37] RASMUSSEN D B, CHRISTENSEN J M, TEMEL B, STUDT F, MOSES P G, ROSSMEISL J, RIISAGER A, JENSEN A D. Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite[J]. Angew Chem Int Ed Eng,2015,54(25):7261−7264. doi: 10.1002/anie.201410974
    [38] CHENG Z Z, HUANG S Y, LI Y, CAI K, WANG Y, WANG M Y, LV J, MA X B. Role of Bronsted acid sites within 8-MR of mordenite in the deactivation roadmap for dimethyl ether carbonylation[J]. ACS Catal,2021,11(9):5647−5657. doi: 10.1021/acscatal.1c00159
    [39] WANG X S, LI R J, YU C C, LIU Y X, XU C M, LU C X. Study on the deactivation process of dimethyl ether carbonylation reaction over mordenite catalyst[J]. Fuel,2021,286.
    [40] LIU Z, NUTT M A, IGLESIA E. The effects of CO2, CO and H2 co-reactants on methane reactions catalyzed by Mo/H-ZSM-5[J]. Catal Lett,2002,81(3/4):271−279.
    [41] XUE H F, HUANG X M, DITZEL E, ZHAN E S, MA M, SHEN W J. Dimethyl ether carbonylation to methyl acetate over nanosized mordenites[J]. Ind Eng Chem Res,2013,52(33):11510−11515. doi: 10.1021/ie400909u
    [42] YAO J, WU Q, FAN J, KOMIYAMA S, YONG X, ZHANG W, ZHAO T, GUO Z, YANG G, TSUBAKI N. A carbonylation zeolite with specific nanosheet structure for efficient catalysis[J]. ACS Nano,2021,15(8):13568−13578. doi: 10.1021/acsnano.1c04419
    [43] ASPROMONTE S G, MIRO E E, BOIX A V. Effect of Ag-Co interactions in the mordenite on the NOx SCR with butane and toluene[J]. Catal Commun,2012,28:105−110. doi: 10.1016/j.catcom.2012.08.021
    [44] DE OLIVEIRA A M, CRIZEL L E, DA SILVEIRA R S, PERGHER S B C, BAIBICH I M. NO decomposition on mordenite-supported Pd and Cu catalysts[J]. Catal Commun,2007,8(8):1293−1297. doi: 10.1016/j.catcom.2006.11.027
    [45] GUPTA N M, KAMBLE V S, RAO K A, IYER R M. Co adsorption desorption properties of cation-exchanged NaX zeolite and supported ruthenium[J]. J Catal,1989,120(2):432−443. doi: 10.1016/0021-9517(89)90283-2
    [46] BENCO L, BUCKO T, HAFNER J, TOULHOAT H. Ab initio simulation of Lewis sites in mordenite and comparative study of the strength of active sites via CO adsorption[J]. J Phys Chem B,2004,108(36):13656−13666. doi: 10.1021/jp048056t
    [47] WANG S, GUO W, ZHU L, WANG H, QIU K, CEN K. Methyl acetate synthesis from dimethyl ether carbonylation over mordenite modified by cation exchange[J]. J Phys Chem C,2014,119(1):524−533.
    [48] YANG G H, SAN X G, JIANG N, TANAKA Y, LI X G, JIN Q, TAO K, MENG F Z, TSUBAKI N. A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts[J]. Catal Today,2011,164(1):425−428. doi: 10.1016/j.cattod.2010.10.027
    [49] KHANDAN N, KAZEMEINI M, AGHAZIARATI M. Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether[J]. Appl Catal A: Gen,2008,349(1/2):6−12. doi: 10.1016/j.apcata.2008.07.029
    [50] BLASCO T, BORONAT M, CONCEPCION P, CORMA A, LAW D, VIDAL-MOYA J A. Carbonylation of methanol on metal-acid zeolites: Evidence for a mechanism involving a multisite active center[J]. Angew Chem Int Ed Eng,2007,46(21):3938−3941. doi: 10.1002/anie.200700029
    [51] ZHANG X, LI Y P, QIU S B, WANG T J, MA L L, ZHANG Q, DING M Y. Effect of calcination temperature on catalytic activity and textual property of Cu/HMOR catalysts in dimethyl ether carbonylation reaction[J]. Chin J Chem Phys,2013,26(2):220−224. doi: 10.1063/1674-0068/26/02/220-224
    [52] REULE A A C, SEMAGINA N. Zinc hinders deactivation of copper-mordenite: Dimethyl ether carbonylation[J]. ACS Catal,2016,6(8):4972−4975. doi: 10.1021/acscatal.6b01464
    [53] REULE A A C, PRASAD V, SEMAGINA N. Effect of Cu and Zn ion-exchange locations on mordenite performance in dimethyl ether carbonylation[J]. Microporous Mesoporous Mater,2018,263:220−230. doi: 10.1016/j.micromeso.2017.12.026
    [54] REULE A A C, SHEN J, SEMAGINA N. Copper affects the location of zinc in bimetallic ion-exchanged mordenite[J]. Chemphyschem,2018,19(12):1500−1506. doi: 10.1002/cphc.201800021
    [55] LI Y, HUANG S Y, CHENG Z Z, CAI K, LI L D, MILAN E, LV J, WANG Y, SUN Q, MA X B. Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of Bronsted acids[J]. Appl Catal B: Environ,2019,256:117777.
    [56] SUSHKEVICH V L, VIMONT A, TRAVERT A, IVANOVA I I. Spectroscopic evidence for open and closed lewis acid sites in ZrBEA zeolites[J]. J Phys Chem C,2015,119(31):17633−17639. doi: 10.1021/acs.jpcc.5b02745
    [57] ZHAO P, QIAN W, MA H, SHENG H, ZHANG H, YING W. Effect of Zr incorporation on mordenite catalyzed dimethyl ether carbonylation[J]. Catal Lett,2020,151(4):940−954.
    [58] MA M, ZHAN E S, HUANG X M, TA N, XIONG Z P, BAI L Y, SHEN W J. Carbonylation of dimethyl ether over Co-HMOR[J]. Catal Sci Technol,2018,8(8):2124−2130. doi: 10.1039/C8CY00407B
    [59] DĚDEČEK J, WICHTERLOVÁ B. Co2+ ion siting in pentasil-containing zeolites. I. Co2+ ion sites and their occupation in mordenite. A Vis−NIR diffuse reflectance spectroscopy study[J]. J Phys Chem B,1999,103(9):1462−1476. doi: 10.1021/jp9818941
    [60] ZHOU H, ZHU W L, SHI L, LIU H C, LIU S P, XU S T, NI Y M, LIU Y, LI L, LIU Z M. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate[J]. Catal Sci Technol,2015,5(3):1961−1968. doi: 10.1039/C4CY01580K
    [61] ZHOU Z Q, LIU H C, CHEN Z Y, ZHU W L, LIU Z M. Decarbonylation of carboxylic acids over H-mordenite[J]. ACS Catal,2021,11(7):4077−4083. doi: 10.1021/acscatal.1c00235
    [62] HE T, HOU G J, LI J J, LIU X C, XU S T, HAN X W, BAO X H. Highly selective methanol-to-olefin reaction on pyridine modified H-mordenite[J]. J Energy Chem,2017,26(3):354−358. doi: 10.1016/j.jechem.2017.02.004
    [63] ZHAO N, TIAN Y, ZHANG L F, CHENG Q P, LYU S S, DING T, HU Z P, MA X B, LI X G. Spacial hindrance induced recovery of over-poisoned active acid sites in pyridine-modified H-mordenite for dimethyl ether carbonylation[J]. Chin J Catal,2019,40(6):895−904. doi: 10.1016/S1872-2067(19)63335-8
    [64] CAO K P, FAN D, LI L Y, FAN B H, WANG L Y, ZHU D L, WANG Q Y, TIAN P, LIU Z M. Insights into the pyridine-modified MOR zeolite catalysts for DME carbonylation[J]. ACS Catal,2020,10(5):3372−3380. doi: 10.1021/acscatal.9b04890
    [65] LI Y, SUN Q, HUANG S Y, CHENG Z Z, CAI K, LV J, MA X B. Dimethyl ether carbonylation over pyridine-modified MOR: Enhanced stability influenced by acidity[J]. Catal Today,2018,311:81−88. doi: 10.1016/j.cattod.2017.08.050
    [66] REULE A A C, SAWADA J A, SEMAGINA N. Effect of selective 4-membered ring dealumination on mordenite-catalyzed dimethyl ether carbonylation[J]. J Catal,2017,349:98−109. doi: 10.1016/j.jcat.2017.03.010
    [67] LU B W, TSUDA T, SASAKI H, OUMI Y, ITABASHI K, TERANISHI T, SANO T. Effect of aluminum source on hydrothermal synthesis of high-silica mordenite in fluoride medium, and it's thermal stability[J]. Chem Mater,2004,16(2):286−291. doi: 10.1021/cm030576y
    [68] CUI M, WANG L, ZHANG Y F, WANG Y, MENG C G. Changes of medium-range structure in the course of crystallization of mordenite from diatomite[J]. Microporous Mesoporous Mater,2015,206:52−57. doi: 10.1016/j.micromeso.2014.12.016
    [69] MA Z P, XIE J Y, ZHANG J L, ZHANG W, ZHOU Y, WANG J. Mordenite zeolite with ultrahigh SiO2/Al2O3 ratio directly synthesized from ionic liquid-assisted dry-gel-conversion[J]. Microporous Mesoporous Mater,2016,224:17−25. doi: 10.1016/j.micromeso.2015.11.007
    [70] WANG X S, LI R J, YU C C, LIU Y X. Study on the reconstruction in the crystallization process of mordenite[J]. Microporous Mesoporous Mater,2021,311.
    [71] HUANG X M, MA M, LI M R, SHEN W J. Regulating the location of framework aluminium in mordenite for the carbonylation of dimethyl ether[J]. Catal Sci Technol,2020,10(21):7280−7290. doi: 10.1039/D0CY01362E
    [72] WANG M X, HUANG S Y, LU J, CHENG Z Z, LI Y, WANG S P, MA X B. Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether[J]. Chin J Catal,2016,37(9):1530−1538. doi: 10.1016/S1872-2067(16)62484-1
    [73] WANG X S, LI R J, YU C C, LIU Y X, LIU L M, XU C M, ZHOU H J, LU C X. Influence of acid site distribution on dimethyl ether carbonylation over mordenite[J]. Ind Eng Chem Res,2019,58(39):18065−18072. doi: 10.1021/acs.iecr.9b02610
    [74] YAO J, FENG X B, FAN J Q, HE Y L, KOSOL R, ZENG Y, LIU G B, MA Q X, YANG G H, TSUBAKI N. Effects of mordenite zeolite catalyst synthesis conditions on dimethyl ether carbonylation[J]. Microporous Mesoporous Mater,2020,306:110431.
    [75] THOMPSON L H, DORAISWAMY L K. The rate enhancing effect of ultrasound by inducing supersaturation in a solid-liquid system[J]. Chem Eng Sci,2000,55(16):3085−3090. doi: 10.1016/S0009-2509(99)00481-9
    [76] LI Y, YU M, CAI K, WANG M, LV J, HOWE R F, HUANG S, MA X. Template-induced Al distribution in MOR and enhanced activity in dimethyl ether carbonylation[J]. Phys Chem Chem Phys,2020,22(20):11374−11381. doi: 10.1039/D0CP00850H
    [77] WANG X S, LI R J, YU C C, LIU Y X, ZHANG L Y, XU C M, ZHOU H J. Enhancing the dimethyl ether carbonylation performance over mordenite catalysts by simple alkaline treatment[J]. Fuel,2019,239:794−803. doi: 10.1016/j.fuel.2018.10.147
    [78] KIM J, JO C, LEE S, RYOO R. Bulk crystal seeding in the generation of mesopores by organosilane surfactants in zeolite synthesis[J]. J Mater Chem A,2014,2(30):11905−11912. doi: 10.1039/C4TA01948B
    [79] TANG T, ZHANG L, FU W, MA Y, XU J, JIANG J, FANG G, XIAO F S. Design and synthesis of metal sulfide catalysts supported on zeolite nanofiber bundles with unprecedented hydrodesulfurization activities[J]. J Am Chem Soc,2013,135(31):11437−11440. doi: 10.1021/ja4043388
    [80] TAGO T, KONNO H, SAKAMOTO M, NAKASAKA Y, MASUDA T. Selective synthesis for light olefins from acetone over ZSM-5 zeolites with nano- and macro-crystal sizes[J]. Appl Catal A: Gen,2011,403(1/2):183−191. doi: 10.1016/j.apcata.2011.06.029
    [81] JANG H G, MIN H K, LEE J K, HONG S B, SEO G. SAPO-34 and ZSM-5 nanocrystals' size effects on their catalysis of methanol-to-olefin reactions[J]. Appl Catal A: Gen,2012,437:120−130.
    [82] GUISNET M, COSTA L, RIBEIRO F R. Prevention of zeolite deactivation by coking[J]. J Mol Catal A: Chem,2009,305(1-2):69−83. doi: 10.1016/j.molcata.2008.11.012
    [83] XUE H F, HUANG X M, DITZEL E, ZHAN E S, MA M, SHEN W J. Coking on micrometer- and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate[J]. Chin J Catal,2013,34(8):1496−1503. doi: 10.1016/S1872-2067(12)60607-X
    [84] KOOHSARYAN E, ANBIA M. Nanosized and hierarchical zeolites: A short review[J]. Chin J Catal,2016,37(4):447−467. doi: 10.1016/S1872-2067(15)61038-5
    [85] WEN F L, DING X N, FANG X D, LIU H C, ZHU W L. Crystal size sensitivity of HMOR zeolite in dimethyl ether carbonylation[J]. Catal Commun,2021,154.
    [86] MA M, HUANG X, ZHAN E, ZHOU Y, XUE H, SHEN W. Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity[J]. J Mater Chem A,2017,5(19):8887−8891. doi: 10.1039/C7TA02477K
    [87] LIU Y, ZHAO N, XIAN H, CHENG Q, TAN Y, TSUBAKI N, LI X. Facilely synthesized H-mordenite nanosheet assembly for carbonylation of dimethyl ether[J]. ACS Appl Mater Inter,2015,7(16):8398−8403. doi: 10.1021/acsami.5b01905
    [88] YUAN Y Y, WANG L Y, LIU H C, TIAN P, YANG M, XU S T, LIU Z M. Facile preparation of nanocrystal-assembled hierarchical mordenite zeolites with remarkable catalytic performance[J]. Chin J Catal,2015,36(11):1910−1919. doi: 10.1016/S1872-2067(15)60960-3
    [89] WANG X S, LI R J, YU C C, ZHANG L Y, XU C M, ZHOU H J. Dimethyl ether carbonylation over nanosheet-assembled hierarchical mordenite[J]. Microporous Mesoporous Mater,2019,274:227−235. doi: 10.1016/j.micromeso.2018.07.048
    [90] SHENG H B, QIAN W X, ZHANG H T, ZHAO P, MA H F, YING W Y. Synthesis of hierarchical porous H-mordenite zeolite for carbonylation of dimethyl ether[J]. Microporous Mesoporous Mater,2020,295:106309.
    [91] LU J X, WANG Y Q, SUN C, ZHAO T T, ZHAO J J, WANG Z Y, LIU W R, WU S H, SHI M X, BU L Z. Novel synthesis and catalytic performance of hierarchical MOR[J]. New J Chem,2021,45(19):8629−8638. doi: 10.1039/D1NJ00133G
    [92] WEI Y, PARMENTIER T E, DE JONG K P, ZECEVIC J. Tailoring and visualizing the pore architecture of hierarchical zeolites[J]. Chem Soc Rev,2015,44(20):7234−7261. doi: 10.1039/C5CS00155B
    [93] LIU S P, CHENG Z Z, LI Y, SUN J H, CAI K, HUANG S Y, LV J, WANG S P, MA X B. Improved catalytic performance in dimethyl ether carbonylation over hierarchical mordenite by enhancing mass transfer[J]. Ind Eng Chem Res,2020,59(31):13861−13869. doi: 10.1021/acs.iecr.0c01156
    [94] QIN Z X, HAFIZ L, SHEN Y F, VAN DAELE S, BOULLAY P, RUAUX V, MINTOVA S, GILSON J P, VALTCHEV V. Defect-engineered zeolite porosity and accessibility[J]. J Mater Chem A,2020,8(7):3621−3631. doi: 10.1039/C9TA11465C
    [95] HE P, LI Y, CAI K, XIONG X, LV J, WANG Y, HUANG S Y, MA X B. Nano-assembled mordenite zeolite with tunable morphology for carbonylation of dimethyl ether[J]. ACS Appl Nano Mater,2020,3(7):6460−6468. doi: 10.1021/acsanm.0c00929
  • 加载中
图(16)
计量
  • 文章访问数:  1086
  • HTML全文浏览量:  457
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 修回日期:  2021-09-04
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2022-02-12

目录

    /

    返回文章
    返回