留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实验和密度泛函理论的NaHCO3吸附SeO2机理研究

李岩松 邓双 胡红云 董璐 黄永达 邹潺 吴诗勇

李岩松, 邓双, 胡红云, 董璐, 黄永达, 邹潺, 吴诗勇. 基于实验和密度泛函理论的NaHCO3吸附SeO2机理研究[J]. 燃料化学学报(中英文), 2023, 51(2): 236-243. doi: 10.19906/j.cnki.JFCT.2022040
引用本文: 李岩松, 邓双, 胡红云, 董璐, 黄永达, 邹潺, 吴诗勇. 基于实验和密度泛函理论的NaHCO3吸附SeO2机理研究[J]. 燃料化学学报(中英文), 2023, 51(2): 236-243. doi: 10.19906/j.cnki.JFCT.2022040
LI Yan-song, DENG Shuang, HU Hong-yun, DONG Lu, HUANG Yong-da, ZOU Chan, WU Shi-yong. Study on the mechanism of SeO2 adsorption by NaHCO3 based on experiment and density functional theory[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 236-243. doi: 10.19906/j.cnki.JFCT.2022040
Citation: LI Yan-song, DENG Shuang, HU Hong-yun, DONG Lu, HUANG Yong-da, ZOU Chan, WU Shi-yong. Study on the mechanism of SeO2 adsorption by NaHCO3 based on experiment and density functional theory[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 236-243. doi: 10.19906/j.cnki.JFCT.2022040

基于实验和密度泛函理论的NaHCO3吸附SeO2机理研究

doi: 10.19906/j.cnki.JFCT.2022040
基金项目: 湖北省重点研发计划 (2021BCA157) ,内蒙古自治区重点研发计划(2020ZD0013)和宁夏回族自治区重点研发计划(2021BEG02001)资助
详细信息
    通讯作者:

    Tel: 13524019769,E-mail: wsy@ecust.edu.cn

  • 中图分类号: R122.7;TQ125.2

Study on the mechanism of SeO2 adsorption by NaHCO3 based on experiment and density functional theory

Funds: The project was supported by the Key R&D Program Project of Hubei Province (2021BCA157) , the Key R&D Program Project of Inner Mongolia Autonomous Region (2020ZD0013) and the Key R&D Program Project of Ningxia Hui Autonomous Region (2021BEG02001).
  • 摘要: 本研究通过吸附实验探究了140−220 ℃下NaHCO3对SeO2的吸附性能,通过一系列表征解析了吸附后样品中硒的总量、价态和形态,结合密度泛函理论计算,探讨了NaHCO3对SeO2的吸附机理。结果表明,NaHCO3对SeO2的吸附性能随温度的升高而增加,在吸附过程中同时发生NaHCO3向Na2CO3的分解反应,分解后产生的Na2CO3吸附活性更强。SeO2吸附过程属于SeO2中Se原子与Na2CO3表面O原子成键的化学吸附,吸附产物以亚硒酸盐为主。
  • FIG. 2099.  FIG. 2099.

    FIG. 2099.  FIG. 2099.

    图  1  吸附实验装置示意图

    Figure  1  Schematic diagram of the adsorption experimental setup

    图  2  Na2CO3原胞和Na2CO3(001)模型

    Figure  2  Na2CO3 proto-cell and Na2CO3(001) models (Red: O; Gray: C; Purple: Na)

    图  3  不同温度下NaHCO3对SeO2的吸附量

    Figure  3  Adsorption capacity of NaHCO3 on SeO2 at different temperatures

    图  4  NaHCO3的热重曲线

    Figure  4  Thermogravimetric curve of NaHCO3

    图  5  热分解前后对SeO2的吸附能力

    Figure  5  Adsorption capacity for SeO2 before and after thermal decomposition

    图  6  热分解前后NaHCO3的SEM照片

    Figure  6  SEM images of NaHCO3 before and after thermal decomposition

    (a): NaHCO3 at a magnification of 500 times; (b): NaHCO3 at a magnification of 5000 times; (c): Na2CO3 after thermal decomposition at a magnification of 500 times; (d): Na2CO3 after thermal decomposition at a magnification of 5000 times

    图  7  NaHCO3和Na2CO3吸附SeO2的热力学计算

    Figure  7  Thermodynamic calculations of SeO2 adsorption by NaHCO3 and Na2CO3

    图  8  吸附产物中Se的形态及价态分布

    Figure  8  Morphology and valence distribution of Se in adsorption products

    图  9  SeO2在Na2CO3(001)表面吸附的电荷密度分布

    Figure  9  Charge density distribution of SeO2 adsorbed on the surface of Na2CO3 (001) (red: O; gray: C; purple: Na; orange: Se; blue area: gain electrons, red area: lose electrons)

    图  10  SeO2和Na2CO3(001)表面的PDOS光谱谱图

    Figure  10  PDOS spectra of SeO2 and Na2CO3(001) surface

    (a): Se atom of SeO2 before adsorption; (b): Se atom of Na2CO3-SeO2 after adsorption; (c): Osurf atom of Na2CO3(001) surface before adsorption; (d): Osurf atom close to Se after adsorption

    表  1  比表面积及孔结构分析

    Table  1  Specific surface area and pore analysis

    SampleSpecific surface
    area /(m2·g−1)
    Aperture /nmHole volume /(cm3·g−1)
    NaHCO30.18315.65307.156×10−4
    NaHCO3-1401.66713.72485.720×10−3
    NaHCO3-1803.33113.06941.088×10−2
    NaHCO3-2203.83110.21961.232×10−2
    下载: 导出CSV

    表  2  SeO2在Na2CO3(001)表面的吸附构型及吸附能

    Table  2  Adsorption configuration of SeO2 on the surface of Na2CO3(001) and adsorption energy (Red: O; gray: C; purple: Na; orange: Se)

    PlacementAdsorption configurationEads/ (kJ·mol−1)
    main viewtop view
    (a) Osurf top,horizontal−127.529
    (b) Osurf top,vertical−113.218
    (c) Vacancy,horizontal−109.455
    (d) Vacancy,vertical−99.035
    (e) Na top,horizontal−87.553
    (f) Na top,vertical−90.834
    下载: 导出CSV
  • [1] 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021.

    National Bureau of Statistics of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021.
    [2] 孙向军, 陈德珍. 垃圾焚烧厂干法脱酸药剂的比较研究[J]. 环境卫生工程,2011,19(6):7−8+11.

    SUN Xiang-jun, CHEN De-zhen. Comparison of dry-deacidification reagents in waste incineration plants[J]. Environ Sanit Eng,2011,19(6):7−8+11.
    [3] 谭增强, 牛国平, 吕晨峰, 侯炜, 丁嘉毅, 潘栋, 王晓冰. 3种高效中温脱酸剂脱酸活性实验[J]. 热力发电,2018,47(8):110−114.

    TAN Zeng-qiang, NIU Guo-ping, LV Chen-feng, HOU Wei, DING Jia-yi, PAN Dong, WANG Xiao-bing. Experimental research on activity of three effective medium-temperature deacidification solvents[J]. Therm Power Gener,2018,47(8):110−114.
    [4] WANG L, CHEN Q, JAMRO I A, LI R D, BALOCH H A. Accelerated co-precipitation of lead, zinc and copper by carbon dioxide bubbling in alkaline municipal solid waste incinerator (MSWI) fly ash wash water[J]. RSC Adv,2016,6(24):20173−20186.
    [5] 王月昶, 刘丽艳. 小苏打干法脱酸助力焚烧烟气超低排放[C] //2019中国环境科学学会科学技术年会论文集(第一卷). 西安: 中国环境科学出版社, 2019: 1023–1028.

    WANG Yue-chang, LIU LI-yan. Baking soda dry de-acidification to help incineration flue gas ultra-low emission[C] //. Proceedings of the 2019 Annual Scientific and Technical Conference of the Chinese Society of Environmental Science (Vol. 1). Xi'an: Chinese environmental science press , 2019: 1023–1028.
    [6] LIU H M, LI S, GUO G Z, GONG L F, ZHANG L Q, QIE Y N, HU H Y, YAO H. Ash formation and the inherent heavy metal partitioning behavior in a 100 t/d hazardous waste incineration plant[J]. Sci Total Environ,2022,814:151938. doi: 10.1016/j.scitotenv.2021.151938
    [7] 徐章. 城市生活垃圾焚烧飞灰中砷和硒的赋存形态研究[D]. 武汉: 华中科技大学, 2016.

    XU Zhang. The study of arsenic and selenium occurrence in municipal solid waste incineration fly ash[D]. Wuhan: Huazhong University of Science and Technology, 2016.
    [8] 黄永达, 胡红云, 龚泓宇, 刘慧敏, 付彪, 李帅, 罗光前, 姚洪. 燃煤电厂砷、硒、铅的排放与控制技术研究进展[J]. 燃料化学学报,2020,48(11):1281−1297.

    HUANG Yong-da, HU Hong-yun, GONG Hong-yu, LIU Hui-min, FU Biao, LI Shuai, LUO Guang-qian, YAO Hong. Research progress on emission and control technologies of arsenic, selenium and lead in coal–fired power plants[J]. J Fuel Chem Technol,2020,48(11):1281−1297.
    [9] 韩健. 燃煤烟气中硒对SCR脱硝催化剂的影响研究[D]. 北京: 华北电力大学, 2020.

    HAN Jian. Research on effects of selenium in Coal-fired flue gas on SCR denitrification catalyst[D]. Beijing: North China Electric Power University, 2020.
    [10] 蓝柳恒. 二氧化硒生产过程职业病危害的预防及控制[J]. 中国卫生产业,2015,12(11):6−8.

    LAN Liu-heng. The discussion for assessment of occupational hazards on the production of selenium oxide two[J]. China Health Ind,2015,12(11):6−8.
    [11] 于梦竹, 王海, 黄亚继, 朱志成, 樊聪慧, 董璐, 程好强. 典型钙/镁基吸附剂对二氧化硒吸附特性研究[J]. 燃料化学学报,2020,48(11):1335−1344.

    YU Meng-zhu, WANG Hai, HUANG Ya-ji, ZHU Zhi-cheng, FAN Cong-hui, DONG Lu, CHENG Hao-qiang. Characteristics of selenium capture by typical Ca- / Mg-based sorbents[J]. J Fuel Chem Technol,2020,48(11):1335−1344.
    [12] YUAN C L, ZHANG C, YU S H, XU H, LI X, FANG Q Y, CHEN G. Experimental and density functional theory study of the adsorption characteristics of CaO for SeO2 in simulated flue gas and the effect of CO2[J]. Energy Fuels,2020,34(9):10872−10881. doi: 10.1021/acs.energyfuels.0c02044
    [13] GHOSHDASTIDAR A, MAHULI S, AGNIHOTRI R, FAN L S. Selenium capture using sorbent powders: Mechanism of sorption by hydrated lime[J]. Environ Sci Technol,1996,30(2):447−452. doi: 10.1021/es950129m
    [14] FAN Y M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci,2017,420:465−471. doi: 10.1016/j.apsusc.2017.04.233
    [15] YUAN B, HU H Y, HUANG Y D, GUO G Z, GONG L F, ZOU C, DONG L, YAO H. Effect of hydrated lime on the migration behavior of selenium in the MSWI plants: Experimental and theoretical study[J]. Chem Eng J,2022,433:134603. doi: 10.1016/j.cej.2022.134603
    [16] MA T T, HUANG Y D, DENG S, FU B, LUO G Q, WANG J G, HU H Y, YUAN C G, YAO H. The relationship between selenium retention and fine particles removal during coal combustion[J]. Fuel,2020,265:116859. doi: 10.1016/j.fuel.2019.116859
    [17] 张晨鼎. 碳酸钠和碳酸氢钠及其复盐与水合物的晶体结构[J]. 纯碱工业,2010,(6):3−10.

    ZHANG Chen-ding. Crystal structures of sodium carbonate and sodium bicarbonate and their complex salts and hydrates[J]. Soda Ind,2010,(6):3−10.
    [18] 蔡天意. 高效钠基脱碳吸收剂开发及反应机理研究[D]. 南京: 东南大学, 2020.

    CAI Tian-yi. R&D for an efficient sodium-based CO2 solid sorbent and study on its bicarbonation/regeneration mechanism[D]. Nanjing: Southeast University, 2020.
    [19] 邹潺. 煤粉恒温燃烧砷的释放特性及转化迁移机理研究[D]. 北京: 华北电力大学, 2020.

    ZOU Chan. Volatilization characteristics, transformation and migration mechanism of arsenic during isothermal pulverized coal combustion[D]. Beijing: North China Electric Power University , 2020.
    [20] 赵传文, 陈晓平, 赵长遂. 碳酸氢钠分解的热重分析研究[J]. 燃烧科学与技术,2009,15(2):135−140.

    ZHAO Chuan-wen, CHEN Xiao-ping, ZHAO Chang-sui. Thermogravimetric analysis study of sodium bicarbonate decomposition[J]. J Combust Sci Technol,2009,15(2):135−140.
    [21] RACLAVSKA H, MATYSEK D, RACLAVSKY K, JUCHELKOVA D. Geochemistry of fly ash from desulphurisation process performed by sodium bicarbonate[J]. Fuel Process Technol,2010,91(2):150−157. doi: 10.1016/j.fuproc.2009.09.004
    [22] MONFORT E, CELADES I, MESTRE S, BONO R, LLOP H, DE LA HOZ J M. Industrial-scale study of NaHCO3 chemical reactions with HF, HCl and SO2 in Kiln flue gases[J]. Key Energy Mater,2001,206–213:855−858.
    [23] GRIECO E, POGGIO A. Simulation of the influence of flue gas cleaning system on the energetic efficiency of a waste-to-energy plant[J]. Appl Energy,2009,86(9):1517−1523. doi: 10.1016/j.apenergy.2008.12.035
    [24] 戴可. 化学反应系统的吉布斯自由能随反应进度变化的讨论[J]. 广东化工,2019,46(1):229−230.

    DAI Ke. Discussion on the change of Gibbs free energy with extent of reaction in chemical reaction system[J]. Guangdong Chem Ind,2019,46(1):229−230.
    [25] 邢佳颖, 王春波, 张月, 邹潺. Se和SeO2在O2/CaO(001)表面吸附反应的第一性原理研究[J]. 燃料化学学报,2019,47(8):993−999.

    XING Jia-ying, WANG Chun-bo, ZHANG Yue, ZOU Chan. First-principles study of the adsorption and reaction of Se and SeO2 on O2 /CaO(001) surface[J]. J Fuel Chem Technol,2019,47(8):993−999.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  998
  • HTML全文浏览量:  184
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 修回日期:  2022-05-05
  • 录用日期:  2022-05-09
  • 网络出版日期:  2022-05-21
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回