留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用煤气化残渣构建Fe3O4和Fe负载的碳基复合吸波材料

力国民 侯如愿 毛璐涛 王喆 张克维 梁丽萍

力国民, 侯如愿, 毛璐涛, 王喆, 张克维, 梁丽萍. 利用煤气化残渣构建Fe3O4和Fe负载的碳基复合吸波材料[J]. 燃料化学学报(中英文), 2023, 51(4): 562-570. doi: 10.19906/j.cnki.JFCT.2022060
引用本文: 力国民, 侯如愿, 毛璐涛, 王喆, 张克维, 梁丽萍. 利用煤气化残渣构建Fe3O4和Fe负载的碳基复合吸波材料[J]. 燃料化学学报(中英文), 2023, 51(4): 562-570. doi: 10.19906/j.cnki.JFCT.2022060
LI Guo-min, HOU Ru-yuan, MAO Lu-tao, WANG Zhe, ZHANG Ke-wei, LIANG Li-ping. Fe3O4 and Fe loaded carbon matrix composite microwave absorbents by recycling of coal gasification residue[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 562-570. doi: 10.19906/j.cnki.JFCT.2022060
Citation: LI Guo-min, HOU Ru-yuan, MAO Lu-tao, WANG Zhe, ZHANG Ke-wei, LIANG Li-ping. Fe3O4 and Fe loaded carbon matrix composite microwave absorbents by recycling of coal gasification residue[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 562-570. doi: 10.19906/j.cnki.JFCT.2022060

利用煤气化残渣构建Fe3O4和Fe负载的碳基复合吸波材料

doi: 10.19906/j.cnki.JFCT.2022060
基金项目: 国家自然科学基金(51802212),山西省自然科学基金(201801D221119)和中国–白俄罗斯电磁环境效应“一带一路”联合实验室(ZBKF2022030802,ZBKF2022030702)资助
详细信息
    通讯作者:

    E-mail:ligm@tyust.edu.cn

    liangliping@tyust.edu.cn

  • 中图分类号: TB34

Fe3O4 and Fe loaded carbon matrix composite microwave absorbents by recycling of coal gasification residue

Funds: The project was supported by the National Science Foundation of China (51802212), the Natural Science Foundation of Shanxi Province (201801D221119) and the China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect (ZBKF2022030802, ZBKF2022030702).
  • 摘要:

    本研究以煤气化残渣作为碳基载体,通过湿化学浸渍法和焙烧处理制得不同磁性组分负载的复合吸波材料。结果表明,在焙烧过程中,主要发生缓慢的碳热还原反应,磁性组分物相由 Fe2O3、Fe3O4转变为 Fe,同时碳热还原反应消耗掉一部分活性较高的碳,复合材料的石墨化程度变差。由于良好的阻抗匹配与衰减特性,复合材料FeCGR1000体现出更佳的吸波性能,当涂层厚度为 2.0 mm时,最低反射损耗值为−25.3 dB,在涂层厚度为1.5 mm时,有效带宽达到4.0 GHz。本研究的开展不仅实现了煤气化残渣资源化利用,而且为煤气化残渣的高附加值应用提供新思路。

  • FIG. 2216.  FIG. 2216.

    FIG. 2216.  FIG. 2216.

    图  1  FeCGR 复合材料的 XRD 谱图(a)与Raman 谱图(b)

    Figure  1  XRD patterns (a) and Raman spectra (b) of FeCGR composites

    图  2  复合材料FeCGR500 (a),FeCGR600 (b),FeCGR700 (c),FeCGR800 (d),FeCGR900 (e)和FeCGR1000 (f )的SEM 照片

    Figure  2  SEM images of FeCGR500 (a), FeCGR600 (b), FeCGR700 (c), FeCGR800 (d), FeCGR900 (e) and FeCGR1000 (f )

    图  3  FeCGR700的XPS光谱谱图

    Figure  3  XPS spectra of FeCGR700: survey scan (a) and C 1s (b)

    图  4  FeCGR700 ((a)1、(a)2)和FeCGR1000 ((b)1、(b)2) 的反射损耗曲线

    Figure  4  Reflection loss curves for FeCGR700 ((a)1, (a)2) and FeCGR1000 ((b)1, (b)2)

    图  5  FeCGR700和FeCGR1000的电磁参数

    Figure  5  Electromagnetic parameters of ε' (a), ε" (b), µ' (c) and µ" (d) for FeCGR700 and FeCGR1000

    图  6  FeCGR700和FeCGR1000的介电损耗因子(a)及磁损耗因子(b)

    Figure  6  Dielectric loss tangents (a) and magnetic loss tangents (b) for FeCGR700 and FeCGR1000

    图  7  FeCGR700 (a)和 FeCGR1000 (b)的Cole-Cole半圆

    Figure  7  Cole-Cole semicircle for FeCGR700 (a) and FeCGR1000 (b)

    图  8  复合材料的衰减常数(a),FeCGR700 (b)和FeCGR1000 (c)的阻抗匹配特性

    Figure  8  Attenuation constant of FeCGR composites (a), Impedance matching characteristic curves of FeCGR700 (b) and FeCGR1000 (c)

    表  1  已报道材料的吸波性能

    Table  1  Microwave absorption performance of some reported absorbents

    SampleEffective
    bandwidth /
    GHz
    RLmin /
    dB
    Coating
    thickness /
    mm
    Ref.
    Fe doping LaCoO34.6−18.12.3[20]
    Fe@MnO21.9−13.21.5[21]
    TiO2@C-Ni/CNTs3.9−19.32.4[22]
    ZnO/C/graphene4.1−26.12.1[23]
    Fe3O4 nanotubes4.5−27.83.0[24]
    FeCGR10004.0−19.81.5this work
    下载: 导出CSV
  • [1] ZHAO B, ZHAO W Y, SHAO G, FAN B B, ZHANG R. Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids[J]. Dalton Trans,2015,44(36):15984−15993. doi: 10.1039/C5DT02715B
    [2] LI Z J, LIN H, DING S Q, LING H L, WANG T, MIAO Z Q, ZHANG M, ALAN M, LI Q D. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon[J]. Carbon,2020,167:148−159. doi: 10.1016/j.carbon.2020.05.070
    [3] WANG Y, WU X M, ZHANG W Z, LUO C Y, LI J H, WANG Y J. Fabrication of flower-like Ni0.5Co0.5(OH)2@PANI and its enhanced microwave absorption performances[J]. Mater Res Bull,2018,98:59−63. doi: 10.1016/j.materresbull.2017.10.004
    [4] ZHANG N, HUANG Y, WANG M Y. 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanoparticles co-decorated for efficient electromagnetic wave absorption[J]. Compos Part B-Eng,2018,136:135−142. doi: 10.1016/j.compositesb.2017.10.029
    [5] WEN S L, LIU Y, ZHAO X C, FAN Z Z. Synthesis, permeability resonance and microwave absorption of flake-assembled cobalt superstructure[J]. J Magn Magn Mater,2015,385:182−187. doi: 10.1016/j.jmmm.2015.03.027
    [6] 邵蕊, 屠天潼, 李一伟, 杨胜林, 金俊弘, 王芳, 李光. 多孔碳纤维吸波复合材料的性能及其影响因素[J]. 功能材料与器件学报,2021,27(6):556−564.

    SHAO Rui, TU Tian-tong, LI Yi-wei, YANG Sheng-lin, JIN Jun-hong, WANG Fang, LI Guang. Microwave absorbing performance of composites filled with porous carbon fibers having different features[J]. J Funct Mater Dev,2021,27(6):556−564.
    [7] WANG Y H, HAN X J, XU P, LIU D W, CUI L R, ZHAO H H, DU Y C. Synthesis of pomegranate-like Mo2C@C nanospheres for efficient microwave absorption[J]. Chem Eng J,2019,372:312−320. doi: 10.1016/j.cej.2019.04.153
    [8] GAO F, LI Y Y, MAO L T, WANG Y K, ZHU B S, LIANG L P, LI G M, ZHANG R. Facile synthesis of Co/SC microwave absorbents by recycling coal hydrogasification residue[J]. Mater Lett,2022,308:131168. doi: 10.1016/j.matlet.2021.131168
    [9] 梁丽萍, 高旭洲, 高飞, 毛璐涛, 朱保顺, 力国民. 基于煤加氢气化半焦制备Ni/碳基复合吸波材料及组成优化[J]. 燃料化学学报,2022,50(7):896−903. doi: 10.19906/j.cnki.JFCT.2022001

    LIANG Li-ping, GAO Xu-zhou, GAO Fei, MAO Lu-tao, ZHU Bao-shun, LI Guo-min. Preparation and composition optimization of the composite Ni/carbon-based microwave absorbents from coal hydrogasification semicoke[J]. J Fuel Chem Technol,2022,50(7):896−903. doi: 10.19906/j.cnki.JFCT.2022001
    [10] 赵永彬, 吴辉, 蔡晓亮, 卓锦德, 赖世耀, 刘洪刚, 井云环, 袁伟. 煤气化残渣的基本特性研究[J]. 洁净煤技术,2015,21(3):110−113. doi: 10.13226/j.issn.1006-6772.2015.03.028

    ZHAO Yong-bin, WU Hui, CAI Xiao-liang, ZHUO Jin-de, LAI Shi-yao, LIU Hong-gang, JING Yun-huan, YUAN Wei. Basic characteristics of coal gasification residual[J]. Clean Coal Technol,2015,21(3):110−113. doi: 10.13226/j.issn.1006-6772.2015.03.028
    [11] XU J, LIU Z H, LI Q, WANG Y B, SHAH T, AHAMD M, ZHANG Q Y, ZHANG B L. Wrinkled Fe3O4@C magnetic composite microspheres: Regulation of magnetic content and their microwave absorbing performance[J]. J Colloid Interf Sci,2021,601:397−410. doi: 10.1016/j.jcis.2021.05.153
    [12] JIANG S, QIAN K, YU K J, ZHOU H F, WENG Y X, ZHANG Z W. Study on ultralight and flexible Fe3O4/melamine derived carbon foam composites for high-efficiency microwave absorption[J]. Chem Phys Lett,2021,779(16):138873.
    [13] LI C P, GE Y Q, JIANG X H, WATERHOUSE G I N, ZHANG Z M, YU L M. Porous Fe3O4/C microspheres for efficient broadband electromagnetic wave absorption[J]. Ceram Int,2018,44(16):19171−83. doi: 10.1016/j.ceramint.2018.06.264
    [14] WANG L, DU Z, BAI X Y, LIN Y. Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra-broadband microwave absorption[J]. J Colloid Interf Sci,2021,591:76−84. doi: 10.1016/j.jcis.2021.01.090
    [15] WANG L, WEN B, YANG H, QIU H, HE N. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber[J]. Compos Part A,2020,135:105958. doi: 10.1016/j.compositesa.2020.105958
    [16] LI G M, MAO L T, ZHU B S, CHANG X, WANG Y K, WANG G Z, ZHANG K W, TIAN Y M, LIANG L P. Novel ceramic-based microwave absorbents derived from gangue[J]. J Mater Chem C,2020,8(40):14238−14245.
    [17] ZHOU X F, JIA Z R, FENG A L, WANG X X, LIU J J, ZHANG M, CAO H J, WU G L. Synthesis of fish skin-derived 3d carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance[J]. Carbon,2019,152:827−836. doi: 10.1016/j.carbon.2019.06.080
    [18] LI J S, XIE Y Z, LU W B, CHOU T W. Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films[J]. Carbon,2018,129:76−84. doi: 10.1016/j.carbon.2017.11.094
    [19] MAO L T, Li L X, LIANG L P, GAO F, ZHU B S, WANG Y K, ZHANG R, LI G M. Magnetic carbon composites derived from coal hydrogasification residue for microwave absorption[J]. Phys Status Solidi A,2022,219(14):2200152. doi: 10.1002/pssa.202200152
    [20] WANG F, Gu W Y, Chen J B, HUANG Q Q, HAN M Y, WANG G H, JI G B. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption[J]. J Mater Sci Technol,2022,105:92−100. doi: 10.1016/j.jmst.2021.06.058
    [21] LIU P B, WANG Y, ZHANG G Z, HUANG Y, ZHANG R X, LIU X H, ZHANG X F, CHE R C. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction[J]. Adv Funct Mater,2022,32(33):2202588. doi: 10.1002/adfm.202202588
    [22] WU L H, LIU X, WAN G P, PENG X G, HE Z Y, SHI S H, WANG G Z. Ni/CNTs and carbon coating engineering to synergistically optimize the interfacial behaviors of TiO2 for thermal conductive microwave absorbers[J]. Chem Eng J,2022,448:137600. doi: 10.1016/j.cej.2022.137600
    [23] ZHOU M F, XU X F, WAN G P, MOU P P, TENG S J, WANG G Z. Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers[J]. Nano Res,2022,15(10):8677−8687. doi: org/10.1007/s12274-022-4521-1
    [24] ZHANG R X, WANG L, Xu C Y, LIANG C Y, LIU X H, ZHANG X F, CHE R C. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency[J]. Nano Res,2022,15(7):6743−6750. doi: 10.1007/s12274-022-4401-8
    [25] CHEN K Y, GUPTA S, TAI N H. Reduced graphene oxide/Fe2O3 hollow microspheres coated sponges for flexible electromagnetic interference shielding composites[J]. Compos Commun,2021,23:100572. doi: 10.1016/j.coco.2020.100572
    [26] QU J S, ZHANG J B, LI H Q, LI S P. A high value utilization process for coal gasification slag: Preparation of high modulus sodium silicate by mechano-chemical synergistic activation[J]. Sci Total Environ,2021,801:149761. doi: 10.1016/j.scitotenv.2021.149761
    [27] WU Y H, XUE K, MA Q L, MA T, MA Y L, SUN Y G, JI W X. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag[J]. Microporous Mesoporous Mater,2020,312(2):110742.
    [28] JI W X, ZHANG S Y, ZHAO P D, ZHANG S S, FENG N, LAN L P, ZHANG X G, SUN Y G, LI Y Y, MA Y L. Green synthesis method and application of NaP zeolite prepared by coal gasification coarse slag from Ningdong, China[J]. Appl Sci,2020,10(8):2694. doi: 10.3390/app10082694
    [29] AI W D, ZHANG J P, ZHANG J Y, MIAO S D, WEI C D. Mechanical properties and morphology of coal gasification fine slag glass bead-filled acrylonitrile-butadiene-styrene (ABS) composites[J]. J Appl Polym Sci,2020,137(17):48601. doi: 10.1002/app.48601
    [30] YING T P, ZHANG J, LIU X G, YU J H, YU J Y, ZHANG X F. Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application[J]. J Alloy Compd,2020,849:156662. doi: 10.1016/j.jallcom.2020.156662
    [31] SONG Y J, RONG H W, LI Y X, LIU W W, ZHANG X F. Engineering defect concentrations of multiwalled carbon nanotubes by microwave irradiation for tunable electromagnetic absorption properties[J]. J Mater Sci,2020,55(28):13871−13880. doi: 10.1007/s10853-020-04996-7
    [32] ZHU D D, CHENG Y, XUE B, JIANG Y S, WEI C D. Coal gasification fine slag as a low-cost adsorbent for adsorption and desorption of humic acid[J]. Silicon-Neth,2020,12:1547−1556. doi: 10.1007/s12633-019-00250-1
    [33] WANG G Z, GAO Z, TANG S W, CHEN C Q, DUAN F F, ZHAO S C, LIN S W, FENG Y H, ZHOU L, QIN Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition[J]. ACS Nano,2021,6:11009−11017.
    [34] CHEN Y X, YUAN F C, SU Q, YU C M, ZHANG K T, LUO P P, HU D F, GUO Y. A novel sound absorbing material comprising discarded luffa scraps and polyester fibers[J]. J Clean Prod,2020,245:118917. doi: 10.1016/j.jclepro.2019.118917
    [35] LIU X D, HUANG Y, YAN J, DING L, ZHANG Z, ZHANG N, LIU P B. Covalently bonded Fe3O4@SiO2-reduced graphene oxide nanocomposites as high-efficiency electromagnetic wave absorbers[J]. Ceram Int,2020,46(4):5175−84. doi: 10.1016/j.ceramint.2019.10.263
    [36] ZHOU X F, ZHANG C H, ZHANG M, FENG A L, QU S L, ZHANG Y, LIU X H, JIA Z R, WU G L. Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance[J]. Compos Part A,2019,127:105627. doi: 10.1016/j.compositesa.2019.105627
    [37] CHENG Y, CAO J M, LI Y, LI Z Y, ZHAO H Q, JI G B, DU Y W. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption[J]. ACS Sustainable Chem Eng,2018,6(1):1427−1435. doi: 10.1021/acssuschemeng.7b03846
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  80
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 修回日期:  2022-07-12
  • 录用日期:  2022-07-14
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回