留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可逆单部件燃料电池双功能催化剂La0.5Sr0.5Co0.2Fe0.8O3的制备及电化学性能研究

刘菲 杨贝贝 马馨语 李萍 闫飞 付东

刘菲, 杨贝贝, 马馨语, 李萍, 闫飞, 付东. 可逆单部件燃料电池双功能催化剂La0.5Sr0.5Co0.2Fe0.8O3的制备及电化学性能研究[J]. 燃料化学学报(中英文), 2023, 51(6): 852-862. doi: 10.19906/j.cnki.JFCT.2022080
引用本文: 刘菲, 杨贝贝, 马馨语, 李萍, 闫飞, 付东. 可逆单部件燃料电池双功能催化剂La0.5Sr0.5Co0.2Fe0.8O3的制备及电化学性能研究[J]. 燃料化学学报(中英文), 2023, 51(6): 852-862. doi: 10.19906/j.cnki.JFCT.2022080
LIU Fei, YANG Bei-bei, MA Xin-yu, LI Ping, YAN Fei, FU Dong. Preparation and electrochemical properties of La0.5Sr0.5Co0.2Fe0.8O3 oxides as bifunctional catalysts for reversible single-component cells[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 852-862. doi: 10.19906/j.cnki.JFCT.2022080
Citation: LIU Fei, YANG Bei-bei, MA Xin-yu, LI Ping, YAN Fei, FU Dong. Preparation and electrochemical properties of La0.5Sr0.5Co0.2Fe0.8O3 oxides as bifunctional catalysts for reversible single-component cells[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 852-862. doi: 10.19906/j.cnki.JFCT.2022080

可逆单部件燃料电池双功能催化剂La0.5Sr0.5Co0.2Fe0.8O3的制备及电化学性能研究

doi: 10.19906/j.cnki.JFCT.2022080
基金项目: 国家自然科学基金(52102246),河北省自然科学基金(B2020502002,B2020502003)和中央高校基本科研业务费专项资金(2020MS124,2020MS126)资助
详细信息
    通讯作者:

    E-mail: yanfeiican@ncepu.edu.cn

  • 中图分类号: O643.36

Preparation and electrochemical properties of La0.5Sr0.5Co0.2Fe0.8O3 oxides as bifunctional catalysts for reversible single-component cells

Funds: The project was supported by the National Natural Science Foundation of China (52102246), Natural Science Foundation of Hebei Province (B2020502002 and B2020502003), and the Fundamental Research Funds for the Central Universities (2020MS124, 2020MS126)
  • 摘要: 利用SBA-15硬模板合成La0.5Sr0.5Co0.2Fe0.8O3 (LSCF)钙钛矿材料,通过研究LSCF的电化学性能,探究制备溶剂(甲醇/乙醇)对LSCF结构、表面性质及电化学性能的影响。结果表明,乙醇溶剂制备的LSCF具有更大的比表面积和更多的氧空位浓度,从而表现出更高的电导率以及对氧还原反应(ORR)和氢氧化反应(HOR)更好的催化活性。这是因为乙醇溶剂制备的LSCF具有更多的Co2 + /Co3 + 和Fe2 + /Fe3 + 电子对,促进了材料的电子传导。此外,对于HOR,电极反应的速率控制步骤(RDS)是吸附的氢原子转移到反应位点;吸附的氧原子在LSCF上的还原是ORR反应的RDS。此外,由乙醇溶剂制备的LSCF组成的可逆单部件电池(RSCC)具有更好的放电和电解水性能。700 ℃,H2-30%H2O燃料下,RSCC的最大功率密度为232.9 mW/cm2,并且在1.3 V的电解电流密度为−398.3 mA/cm2
  • FIG. 2390.  FIG. 2390.

    FIG. 2390.  FIG. 2390.

    图  1  (a) HOR和ORR的电化学性能测试系统示意图;(b) SCFC和RSCC的测试系统示意图

    Figure  1  Schematic diagram of the test system for (a) electrochemical performance of HOR and ORR, (b) SCFC and RSCC

    图  2  还原前后LSCF-SBA-1和LSCF-SBA-2 的(a) XRD谱图;(b)局部放大谱图;(c)晶格膨胀率;(d) LSCF-SBA-1和LSCF-SBA-2的N2吸附-脱附曲线;(e) LSCF-SBA-1的SEM照片;(f) LSCF-SBA-2的SEM照片

    Figure  2  (a) XRD patterns, (b) partially magnified patterns, (c) the corresponding lattice parameters of non-reduced and reduced samples of LSCF-SBA-1 and LSCF-SBA-2, (d) N2 adsorption-desorption isotherms of LSCF-SBA-1 and LSCF-SBA-2, (e) SEM image of LSCF-SBA-1 and (f) SEM image of LSCF-SBA-2

    图  3  LSCF-SBA-1和LSCF-SBA-2的XPS谱图:(a) Co 2p, (b) Fe 2p, (c) O 1s

    Figure  3  XPS spectra of (a) Co 2p, (b) Fe 2p, (c) O 1s of LSCF-SBA-1 and LSCF-SBA-2

    图  4  LSCF-SBA-1和LSCF-SBA-2 组成的SCFCs在700 ℃时的((a)、(b)) I-V-P曲线和Pmax值; ((c)、(d))交流阻抗谱图和对应的ASR值(氢电极侧:H2;氧电极侧:O2);((e)、(f)) LSCF-SBA-2 组成的SCFCs在700−550 ℃时的I-V-P曲线和Pmax

    Figure  4  ((a), (b)) Current density-voltage-power density curves and Pmax values; ((c), (d)) Impedance spectra and the corresponding ASR values of the SCFCs composed of LSCF-SBA-1 and LSCF-SBA-2 oxides at 700 ℃ (hydrogen side: H2; oxygen side: O2); ((e), (f)) I-V-P curves and Pmax values of SCFCs composed of LSCF-SBA-2 at 700−550 ℃

    图  5  SDC-LN-30%LSCF-SBA-1和SDC-LN-30%LSCF-SBA-2在550−700 ℃下的电导率:(a) O2气氛,(b) H2气氛

    Figure  5  Electrical conductivities of SDC-LN-30%LSCF-SBA-1 and SDC-LN-30%LSCF-SBA-2 in (a) O2 atmosphere, and (b) H2 atmosphere at 550−700 ℃

    图  6  H2气氛中不同温度下由LSCF-SBA-1和LSCF-SBA-2组成的SCFCs的(a)交流阻抗谱图;((b)、(c))相应的ASR值;(d) Rp与温度的阿伦尼乌斯曲线

    Figure  6  (a) Impedance spectra; ((b), (c)) the corresponding ASR values, (d) Arrhenius plots of Rp for SCFCs with LSCF-SBA-1 and LSCF-SBA-2 at various temperatures in H2 atmosphere

    图  7  不同PH2下LSCF-SBA-1和LSCF-SBA-2的(a)交流阻抗谱;((b)、(c))相应的ASR值;(d) RpPH2的关系图

    Figure  7  (a) Impedance spectra; ((b), (c)) the corresponding ASR values under various PH2 and (d) PH2 dependence of Rp for SCFC composed of LSCF-SBA-1 and LSCF-SBA-2

    图  8  ((a)、(b)) 700 ℃氧气气氛下SCFC的阻抗谱和对应的Rp值;(c) 不同pO2下由LSCF-SBA-2组成的SCFC的交流阻抗谱图;(d) RppO2的关系

    Figure  8  ((a), (b)) Impedance spectra and the corresponding Rp values of the SCFCs at 700 ℃ in O2 atmosphere (c) Impedance spectra under various pO2 at 700 ℃ for SCFC composed of LSCF-SBA-2 and (d) pO2 dependence of Rp

    图  9  ((a)、(b)) RSCCs在700 ℃下的I-VI-P曲线以及对应的Pmax值和1.3 V下的电流密度;((c)、(d)) 由LSCF-SBA-2组成的RSCCs在700、650、600和550 ℃的I-VI-P曲线以及对应的Pmax值和1.3 V下的电流密度

    Figure  9  I-V, I-P curves, the corresponding Pmax values and current densities (at 1.3 V) of the RSCCs composed of ((a), (b)) LSCF-SBA-1 and LSCF-SBA-2 oxides at 700 ℃ and ((c), (d)) LSCF-SBA-2 at 700, 650, 600 and 550 ℃ (oxygen side: O2; hydrogen side: 70%H2-30%H2O)

    表  1  还原前后LSCF-SBA钙钛矿氧化物的晶格参数

    Table  1  Lattice parameters of the LSCF-SBA perovskite oxides before and after reduction

    SampleSpace groupa=b /Åc /Å
    LSCF-SBA-1R-3c5.51113.416
    LSCF-SBA-2R-3c5.52713.421
    Reduced LSCF-SBA-1R-3c5.53013.436
    Reduced LSCF-SBA-2R-3c5.54413.445
    下载: 导出CSV

    表  2  LSCF系列样品的Fe 2p、Co 2p和O 1s光谱曲线拟合后各峰的相对面积

    Table  2  Relative areas derived from curve deconvolutions of Fe 2p, Co 2p and O 1s spectra for LSCF series samples

    SampleContent /%
    Fe2 + Fe3 + Co2 + Co3 + surface Oadsorbed Olattice O
    LSCF-SBA-137.462.628.871.249.431.019.6
    LSCF-SBA-254.345.743.556.539.835.025.2
    下载: 导出CSV
  • [1] GUO Y, GUO T, ZHOU S, WU Y, CHEN H, OU X, LING Y. Characterization of Sr2Fe 1.5Mo0.5O6-δ-Gd0.1Ce0.9O1.95 symmetrical electrode for reversible solid oxide cells[J]. Ceram Int,2019,45(8):10969−10975. doi: 10.1016/j.ceramint.2019.02.179
    [2] LUO Y, SHI Y, LI W, CAI N. Mechanism of rate-limiting step switchover for reversible solid oxide cells in H2/H2O atmosphere[J]. Electrochim Acta,2019,326:135003. doi: 10.1016/j.electacta.2019.135003
    [3] QIU P, YANG X, WANG W, WEI T, CHEN F. Redox-Reversible Electrode Material for Direct Hydrocarbon Solid Oxide Fuel Cells[J]. ACS Appl Mater Interfaces,2020,12(12):13988−13995. doi: 10.1021/acsami.0c00922
    [4] ZHENG Y, WANG S, PAN Z, YIN B. Electrochemical CO2 reduction to CO using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode[J]. Energy,2021,228:120579. doi: 10.1016/j.energy.2021.120579
    [5] KIM Y, YANG J, SAQIB M, PARK K, SHIN J, JO M, PARK K, LIM H, SONG S, PARK J. Cobalt-free perovskite Ba1-xNdxFeO3-δ air electrode materials for reversible solid oxide cells[J]. Ceram Int,2021,47(6):7985−7993. doi: 10.1016/j.ceramint.2020.11.149
    [6] EBBESEN S, JENSEN S H, HAUCH A, MOGENSEN M B. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells[J]. Chem Rev,2014,114(21):10697−10734. doi: 10.1021/cr5000865
    [7] ZHENG Y, WANG J, YU B, ZHANG W, CHEN J, QIAO J, ZHANG J. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology[J]. Chem Soc Rev,2017,46(5):1427−1463.
    [8] HANIF M B, MOTOLA M, QAYYUM S, RAUF S, KHALID A, LI C J, LI C X. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion[J]. Chem Eng J,2022,428:132603. doi: 10.1016/j.cej.2021.132603
    [9] WANG Y, LIU T, LEI L, CHEN F. High temperature solid oxide H2O/CO2 co-electrolysis for syngas production[J]. Fuel Process Technol,2017,161:248−258. doi: 10.1016/j.fuproc.2016.08.009
    [10] SHEN L, DU Z, ZHANG Y, DONG X, ZHAO H. Medium-Entropy perovskites Sr(FeαTiβCoγMnζ)O3−δ as promising cathodes for intermediate temperature solid oxide fuel cell[J]. Appl Catal B: Environ,2021,295:120264. doi: 10.1016/j.apcatb.2021.120264
    [11] SHAO K, LI F, ZHANG G, ZHANG Q, MALIUTINA K, FAN L. Approaching durable single-layer fuel cells: Promotion of electroactivity and charge separation via nanoalloy redox exsolution[J]. ACS Appl Mater Inter,2019,11(31):27924−27933. doi: 10.1021/acsami.9b08448
    [12] ZHAO Y, HE Y, FAN L, HE J, XIONG D B, GAO F, ZHU B. Synthesis of hierarchically porous LiNiCuZn-oxide and its electrochemical performance for low-temperature fuel cells[J]. Int J Hydrogen Energy,2014,39(23):12317−12322. doi: 10.1016/j.ijhydene.2014.03.087
    [13] HU H Q, LIN Q Z, ZHU Z G, ZHU B, LIU X R. Fabrication of electrolyte-free fuel cell with Mg0.4Zn0.6O/Ce0.8Sm0.2O2-delta-Li0.3Ni0.6Cu0.07Sr0.03O2-delta layer[J]. J Power Sources,2014,248:577−581. doi: 10.1016/j.jpowsour.2013.09.095
    [14] LI P, YANG P, SHAO T, HAN Y, DONG R, LIU F, YAN F, GAN T, FU D. Evaluating the effect of B-site cation doping on the properties of Pr0.4Sr0.5Fe0.9Mo0.1O3 for reversible single-component cells[J]. Ind Eng Chem Res,2022,61(15):5030−5041. doi: 10.1021/acs.iecr.2c00591
    [15] LEE J, MYUNG J, NADEN A, JEON O, SHUL Y, IRVINE J. Replacement of Ca by Ni in a perovskite titanate to yield a novel perovskite exsolution architecture for oxygen-evolution reactions[J]. Adv Energy Mater,2020,1903693.
    [16] DONG X, TIAN L, LI J, ZHAO Y C, TIAN Y, LI Y D. Single layer fuel cell based on a composite of Ce0.8Sm0.2O2-delta-Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6-delta[J]. J Power Sources,2014,249:270−276. doi: 10.1016/j.jpowsour.2013.10.045
    [17] LI P, DONG R, WANG Y, YAN F, WANG L, LI M, FU D. Improving the performance of Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ-based single-component fuel cell and reversible single-component cells by manufacturing A-site deficiency[J]. Renewable Energy,2021,177:387−396. doi: 10.1016/j.renene.2021.05.141
    [18] SONG Y, ZHANG X, XIE K, WANG G, BAO X. High-temperature CO2 electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects[J]. Adv Mater,2019,31(50):e1902033. doi: 10.1002/adma.201902033
    [19] ZHANG L, HU S, LI W, CAO Z, LIU H, ZHU X, YANG W. Nano-CeO2-modified cathodes for direct electrochemical CO2 reduction in solid oxide electrolysis cells[J]. ACS Sustainable Chem Eng,2019,7(10):9629−9636. doi: 10.1021/acssuschemeng.9b01183
    [20] WANG S, JIANG H, GU Y, YIN B, CHEN S, SHEN M, ZHENG Y, GE L, CHEN H, GUO L. Mo-doped La0.6Sr0.4FeO3−δ as an efficient fuel electrode for direct electrolysis of CO2 in solid oxide electrolysis cells[J]. Electrochim Acta,2020,337:135794. doi: 10.1016/j.electacta.2020.135794
    [21] LI P, CHEN X, LI Y, SCHWANK J W. Effect of preparation methods on the catalytic activity of La0.9Sr0.1CoO3 perovskite for CO and C3H6 oxidation[J]. Catal Today,2021,364:7−15. doi: 10.1016/j.cattod.2020.03.012
    [22] RUAN Y, ZHAO Y, LU Y, GUO D, ZHAO Y, WANG S. Mesoporous LaAl0.25Ni0.75O3 perovskite catalyst using SBA-15 as templating agent for methane dry reforming[J]. Microporous Mesoporous Mater,2020,303:110278. doi: 10.1016/j.micromeso.2020.110278
    [23] YAN F, LI P, ZHANG X. CO and C3H6 oxidation over La0.9Sr0.1CoO3 catalysts: Influence of preparation solvent[J]. Korean J Chem Eng,2021,38(5):945−951. doi: 10.1007/s11814-021-0781-9
    [24] LI P, CHEN X, MA L, BHAT A, LI Y, SCHWANK J W. Effect of Ce and La dopants in Co3O4 nanorods on catalytic activity of CO and C3H6 oxidation[J]. Catal Sci Technol,2019,9:1165−1177. doi: 10.1039/C8CY02460J
    [25] MARROCCHELLI D, BISHOP S R, TULLER H L, YILDIZ B. Understanding chemical expansion in non‐stoichiometric oxides: ceria and zirconia case studies[J]. Adv Funct Mater,2012,22(9):1958−1965. doi: 10.1002/adfm.201102648
    [26] SWALLOW J, WOODFORD W, CHEN Y, LU Q, KIM J, CHEN D, CHIANG Y M, CARTER W, YILDIZ B, TULLER H. Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage[J]. J Electroceram,2014,32(1):3−27.
    [27] FU Y, SUBARDI A, HSIEH M, CHANG W. Electrochemical Properties of La0.5Sr0.5Co0.8M0.2O3-δ (M=Mn, Fe, Ni, Cu) Perovskite Cathodes for IT-SOFCs[J]. J Am Ceram Soc,2016,99(4):1345−1352. doi: 10.1111/jace.14127
    [28] FAN L, WANG J, HUANG Z, YAO X, HOU N, GAN T, GAN J, ZHAO Y, LI Y. Enhancement of the electrocatalytic activity of La0.6Sr0.4Co0.2Fe0.8O3−δ through surface modification by acid etching[J]. Catal Today,2021,364:97−103. doi: 10.1016/j.cattod.2020.11.024
    [29] WAN Y, XING Y, XU Z, XUE S, ZHANG S, XIA C. A-site bismuth doping, a new strategy to improve the electrocatalytic performances of lanthanum chromate anodes for solid oxide fuel cells[J]. Appl Catal B: Environ,2020,269:118809.
    [30] HUA B, LI M, ZHANG Y Q, SUN Y F, LUO J L. All-in-one perovskite catalyst: smart controls of architecture and composition toward enhanced oxygen/hydrogen evolution reactions[J]. Adv Energy Mater,2017,7(20):1700666. doi: 10.1002/aenm.201700666
    [31] MOON E J, XIE Y, LAIRD E D, KEAVNEY D J, LI C Y, MAY S J. Fluorination of epitaxial oxides: synthesis of perovskite oxyfluoride thin films[J]. J Am Chem Soc,2014,136(6):2224−2227. doi: 10.1021/ja410954z
    [32] ZHUANG Z, LI Y, YU R, XIA L, YANG J, LANG Z, ZHU J, HUANG J, WANG J, WANG Y, FAN L, WU J, ZHAO Y, WANG D, LI Y. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes[J]. Nature Catal,2022,5(4):300−310. doi: 10.1038/s41929-022-00764-9
    [33] YANG X, SUN W, MA M, XU C, REN R, QIAO J, WANG Z, ZHEN S, SUN K. Enhancing stability and catalytic activity by in situ exsolution for high-performance direct hydrocarbon solid oxide fuel cell anodes[J]. Ind Eng Chem Res,2021,60(21):7826−7834.
    [34] LI P, YANG Q, ZHANG H, YAO M, YAN F, FU D. Effect of Fe, Ni and Zn dopants in La0.9Sr0.1CoO3 on the electrochemical performance of single-component solid oxide fuel cell[J]. Int J Hydrogen Energy,2020,45(20):11802−11813. doi: 10.1016/j.ijhydene.2020.02.116
    [35] MA L, SEO C Y, CHEN X, SUN K, SCHWANK J W. Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust[J]. Appl Catal B: Environ,2018,222:44−58. doi: 10.1016/j.apcatb.2017.10.001
    [36] ZHI X, GAN T, HOU N, FAN L, YAO T, WANG J, ZHAO Y, Li Y. ZnO-promoted surface diffusion on NiO-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cell[J]. J Power Sources,2019,423:290−296. doi: 10.1016/j.jpowsour.2019.03.088
    [37] LI P, DONG R, YANG P, MA X, YAN F, ZHANG P, FU D. Performance enhanced of Ni-Ce0.8Sm0.2O1.9 hydrogen electrode for reversible solid oxide cells with cadmium substitution[J]. J Electroanal Chem,2021,882:115018. doi: 10.1016/j.jelechem.2021.115018
    [38] LI P, DONG R, JIANG X, ZHANG S, LIU T, WANG R, YAN F, FU D. The effect of CeO2 morphology on the electrochemical performance of the reversible solid oxide cells[J]. J Electroanal Chem,2020,873:114513. doi: 10.1016/j.jelechem.2020.114513
    [39] WANG Z, YANG W, SHAFI S P, BI L, WANG Z, PENG R, XIA C, LIU W, LU Y. A high performance cathode for proton conducting solid oxide fuel cells[J]. J Mater Chem A,2015,3(16):8405−8412.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  64
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-09
  • 修回日期:  2022-11-01
  • 录用日期:  2022-11-03
  • 网络出版日期:  2022-11-08
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回