留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污泥燃烧中H2O、SO2和CO2对PbO在CaO表面吸附的影响

史一林 何学富 王彦霖 乔晓磊 贾里 金燕

史一林, 何学富, 王彦霖, 乔晓磊, 贾里, 金燕. 污泥燃烧中H2O、SO2和CO2对PbO在CaO表面吸附的影响[J]. 燃料化学学报(中英文), 2023, 51(9): 1240-1249. doi: 10.19906/j.cnki.JFCT.2023001
引用本文: 史一林, 何学富, 王彦霖, 乔晓磊, 贾里, 金燕. 污泥燃烧中H2O、SO2和CO2对PbO在CaO表面吸附的影响[J]. 燃料化学学报(中英文), 2023, 51(9): 1240-1249. doi: 10.19906/j.cnki.JFCT.2023001
SHI Yi-lin, HE Xue-fu, WANG Yan-lin, QIAO Xiao-lei, JIA Li, JIN Yan. Effect of H2O, SO2 and CO2 on PbO adsorption in CaO surface during sewage sludge combustion[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1240-1249. doi: 10.19906/j.cnki.JFCT.2023001
Citation: SHI Yi-lin, HE Xue-fu, WANG Yan-lin, QIAO Xiao-lei, JIA Li, JIN Yan. Effect of H2O, SO2 and CO2 on PbO adsorption in CaO surface during sewage sludge combustion[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1240-1249. doi: 10.19906/j.cnki.JFCT.2023001

污泥燃烧中H2O、SO2和CO2对PbO在CaO表面吸附的影响

doi: 10.19906/j.cnki.JFCT.2023001
基金项目: 国家自然科学基金(U1910214)资助
详细信息
    通讯作者:

    E-mail: jinyan@tyut.edu.cn

  • 中图分类号: TQ534

Effect of H2O, SO2 and CO2 on PbO adsorption in CaO surface during sewage sludge combustion

Funds: The project was supported by the National Natural Science Foundation of China (U1910214)
  • 摘要: 采用密度泛函理论研究了污泥燃烧过程中烟气组分对PbO在CaO(001)表面吸附的影响。计算结果表明,CaO(001)表面的 O顶位是PbO、H2O、SO2和CO2分子吸附的活性位点。H2O、SO2和CO2分子的存在分别使PbO分子在CaO(001)表面的吸附能较洁净表面增大了71.42、19.589和46.431 kJ/mol。H2O分子在吸附过程中形成的OH基团和局部Ca(OH)2表面结构有利于PbO分子的吸附。SO2分子中的OS原子和CaO(001)表面的Osurf原子的态密度轨道均与Pb原子轨道产生重叠,使得PbO分子在表面的吸附更加稳定。CO2分子预吸附在CaO(001)表面形成的CO3基团对PbO分子存在强吸附作用,使得PbO分子更稳定的吸附在CaO(001)表面。
  • FIG. 2667.  FIG. 2667.

    FIG. 2667.  FIG. 2667.

    图  1  CaO(001)周期性板块模型

    Figure  1  CaO (001) periodic plate model

    图  2  PbO在CaO(001)表面优化前后的吸附结构示意图

    Figure  2  Adsorption structure of PbO before and after optimization on CaO(001) surface

    图  3  PbO分子在CaO(001)表面吸附的电子密度和PDOS谱图

    Figure  3  Electron density map and PDOS of PbO molecules on the surface of CaO(001)

    图  4  H2O在CaO(001)表面优化前后的吸附结构示意图

    Figure  4  Adsorption structure of H2O before and after optimization on the surface of CaO (001)

    图  5  H2O分子稳定吸附于CaO(001)表面的电子密度和差分电荷密度

    Figure  5  Electron density map and differential charge density map of H2O molecules stably adsorbed on the surface of CaO(001)

    图  6  SO2在CaO(001)表面优化前后的吸附结构示意图

    Figure  6  Adsorption structure of SO2 before and after optimization on CaO(001) surface

    图  7  SO2分子稳定吸附于CaO(001)表面的电子密度和差分电荷密度

    Figure  7  Electron density map and differential charge density map of SO2 molecules stably adsorbed on the surface of CaO(001)

    图  8  CO2在CaO(001)表面优化前后的吸附结构示意图

    Figure  8  Adsorption structure of CO2 before and after optimization on CaO(001) surface

    图  9  CO2分子稳定吸附于CaO(001)表面的电子密度和差分电荷密度

    Figure  9  Electron density map and differential charge density map of CO2 molecules stably adsorbed on the surface of CaO(001)

    图  10  H2O对PbO在CaO表面吸附的影响

    Figure  10  Effect of H2O on the adsorption of PbO on CaO surface

    图  11  PbO分子在H2O + CaO(001)表面吸附后的电子密度

    Figure  11  Electron density diagram of PbO molecules after adsorption on the surface of H2O + CaO(001)

    图  12  SO2对PbO在CaO表面吸附的影响

    Figure  12  Effect of SO2 on the adsorption of PbO on CaO surface

    图  13  Pb、OS原子和Osurf原子的PDOS

    Figure  13  PDOS of Pb, OS atom and Osurf atom

    图  14  CO2对PbO在CaO表面吸附的影响

    Figure  14  Effect of CO2 on the adsorption of PbO on CaO surface

    图  15  Pb、Osurf原子和OC原子的PDOS

    Figure  15  PDOS of Pb, Osurf atom and OC atom

    表  1  结构和能量收敛标准

    Table  1  Structural and energy convergence criteria

    ParameterConvergence criteria
    SCF tolerance1.0 × 10−6 eV/atom
    Energy tolerance1.0 × 10−5 eV/atom
    Maximum displacement tolerance0.001 Å
    Maximum force tolerance0.03 eV/Å
    下载: 导出CSV

    表  2  各分子优化后的键长和键角

    Table  2  Optimized bond length and bond angle for each molecule

    MoleculeKey ength /
    key angle
    Optimize
    value /
    (Å·(°)−1)
    Reference
    value /
    (Å·(°)−1)
    Relative
    error/%
    CaOCa−O4.9094.8052.164
    α=β=γ90900.000
    H2OH−O0.9780.961.875
    H−O−H103.741104.50.726
    SO2S−O1.4571.431.889
    O−S−O119.401119.50.083
    CO2C−O1.1731.1630.860
    O−C−O179.9901800.006
    PbOPb−O1.9461.921.354
    下载: 导出CSV

    表  3  PbO在CaO表面吸附的参数

    Table  3  Parameters of PbO after adsorption on CaO surface

    Adsorption structureEad/
    (kJ·mol−1
    Pb−O bond length /ÅPb−Osurf bond
    length /Å
    q(PbO)/e
    1-a−143.5402.0142.329−0.16
    1-b−126.8942.0132.291−0.19
    1-c−143.8672.0122.329−0.16
    1-d−143.6762.0112.330−0.16
    下载: 导出CSV

    表  4  H2O分子在CaO(001)表面吸附的参数

    Table  4  Parameters of H2O after adsorption on CaO surface

    Adsorption
    structure
    Ead/
    (kJ·mol−1
    H−O bond
    length /Å
    q(H2O)/e
    2-a−74.2081.037−0.23
    2-b−85.2200.972−0.25
    2-c−91.4500.974−0.26
    2-d−28.3680.9800.01
    下载: 导出CSV

    表  5  SO2在CaO(001)表面吸附的参数

    Table  5  Parameters of SO2 after adsorption on CaO surface

    Adsorption
    structure
    Ead /(kJ·mol−1S−Osurf
    distance /Å
    q(SO2) /e
    3-a−231.0853.088−0.08
    3-b−235.9523.232−0.16
    3-c−396.9921.697−0.28
    3-d−228.5413.615−0.06
    下载: 导出CSV

    表  6  CO2在CaO(001)表面吸附的参数

    Table  6  Parameters of CO2 after adsorption on CaO surface

    Adsorption
    structure
    Ead /(kJ·mol−1C−Osurf
    distance /Å
    q(CO2) /e
    4-a−17.187−0.04
    4-b−122.7971.407−0.63
    4-c−122.8451.406−0.61
    4-d0.304−0.03
    下载: 导出CSV

    表  7  PbO在H2O/SO2/CO2 + CaO(001)表面吸附的吸附能、键参数和电荷转移

    Table  7  Adsorption energy, bond parameters and charge transfer of PbO adsorption on the surface of H2O/SO2/CO2 + CaO(001)

    Adsorption
    structure
    Ead /
    (kJ·mol−1
    Pb−Osurf bond
    length /Å
    Pb−Osurf
    population
    H2O−215.2872.5640.14
    SO2−163.4562.8360.11
    CO2−190.2982.4590.18
    下载: 导出CSV
  • [1] 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学,2020,72(6):30−34.

    DAI Xiao-hu. Status quo and development trend of sludge treatment and disposal in China[J]. Science,2020,72(6):30−34.
    [2] 戴晓虎. 城镇污水处理厂污泥稳定化处理的必要性和迫切性的思考[J]. 给水排水,2017,53(12):1−5. doi: 10.3969/j.issn.1002-8471.2017.12.001

    DAI Xiao-hu. Thinking on the necessity and urgency of stabilizing sludge treatment in urban sewage treatment plants[J]. Water Wastewater Eng,2017,53(12):1−5. doi: 10.3969/j.issn.1002-8471.2017.12.001
    [3] 刘敬勇, 孙水裕. 城市污泥焚烧过程中重金属形态与分布的热力学平衡分析[J]. 中国有色金属学报,2010,20(8):1645−1655. doi: 10.19476/j.ysxb.1004.0609.2010.08.031

    LIU Jing-yong, SUN Shui-yu. Thermodynamic equilibrium analysis of the morphology and distribution of heavy metals during the incineration process of municipal sludge[J]. Chin J Nonferrous Met,2010,20(8):1645−1655. doi: 10.19476/j.ysxb.1004.0609.2010.08.031
    [4] 刘敬勇, 孙水裕, 陈涛, 陆少游, 谢武明, 杜青平, 杨佐毅, 李磊. 污泥焚烧过程中Pb的迁移行为及吸附脱除[J]. 中国环境科学,2014,34(2):466−477.

    LIU Jing-yong, SUN Shui-yu, CHEN Tao, LV Shao-you, XIE Wu-ming, DU Qing-ping, YANG Zuo-yi, LI Lei. Migration behavior and adsorption removal of Pb during sludge incineration[J]. China Environ Sci,2014,34(2):466−477.
    [5] 郭帅, 于士祥, 车德勇, 刘洪鹏, 孙佰仲. 污泥与秸秆掺烧过程及污泥灰中重金属含量分析[J]. 农业工程学报,2021,37(12):207−214. doi: 10.11975/j.issn.1002-6819.2021.12.024

    GUO Shuai, YU Shi-xiang, CHE De-yong, LIU Hong-peng, SUN Bai-zhong. Analysis of sludge and straw mixing process and heavy metal content in sludge ash[J]. Trans Chin Soc Agric Eng,2021,37(12):207−214. doi: 10.11975/j.issn.1002-6819.2021.12.024
    [6] 石瑶, 王鑫, 陈静, 齐宇彤, 芦柏年, 侯慧杰, 吴晓晖, 娄伟, 刘平波, 肖劲光, 肖武, 王琳玲. 硫酸厂污泥中砷的赋存形态、浸出特征及机制分析[J]. 环境科学学报,2022,42(3):237−245. doi: 10.13671/j.hjkxxb.2021.0322

    SHI Yao, WANG Xin, CHEN Jing, QI Yu-tong, LU Bo-nian, HOU Hui-jie, WU Xiao-hui, LOU Wei, LIU Ping-bo, XIAO Jin-guang, XIAO-Wu, WANG Lin-ling. Analysis of the occurrence form, leaching characteristics and mechanism of arsenic in sludge from sulfuric acid plant[J]. J Environ Sci China,2022,42(3):237−245. doi: 10.13671/j.hjkxxb.2021.0322
    [7] WANG S J, HE P J, SHAO L M, ZHANG H. Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment[J]. Chemosphere,2016,161:242−250. doi: 10.1016/j.chemosphere.2016.07.020
    [8] 刘忠, 王硕, 白宝泉. 燃煤飞灰中矿物质对烟气中As、Se、Pb形态分布影响的热力学研究[J]. 燃料化学学报,2020,48(12):1530−1536. doi: 10.3969/j.issn.0253-2409.2020.12.015

    LIU Zhong, WANG Shuo, BAI Bao-quan. Thermodynamic study on the effect of minerals in coal-fired fly ash on the speciation distribution of As、Se and Pb in flue gas[J]. J Fuel Chem Technol,2020,48(12):1530−1536. doi: 10.3969/j.issn.0253-2409.2020.12.015
    [9] 孙晓, 钱枫, 魏新鲜, 严军. 添加CaO对燃煤重金属元素富集效果的影响[J]. 化工环保,2016,36(2):205−210. doi: 10.3969/j.issn.1006-1878.2016.02.016

    SUN Xiao, QIAN Feng, WEI Xin-xian, YAN Jun. Effect of CaO addition on the enrichment effect of heavy metal elements in coal-fired coal[J]. Environ Prot Chem Ind,2016,36(2):205−210. doi: 10.3969/j.issn.1006-1878.2016.02.016
    [10] 郭帅, 于士祥, 车德勇, 刘洪鹏, 孙佰仲. 脱水污泥与秸秆掺烧及重金属迁移转化特性研究[J]. 燃料化学学报,2022,50(3):283−294. doi: 10.1016/S1872-5813(21)60168-8

    GUO Shuai, YU Shi-xiang, CHE De-yong, LIU Hong-peng, SUN Bai- zhong. Study on the characteristics of dewatered sludge and straw mixing and heavy metal migration and transformation[J]. J Fuel Chem Technol,2022,50(3):283−294. doi: 10.1016/S1872-5813(21)60168-8
    [11] HAN H, HU S, LU C, WANG Y, JIANG L, XIANG J, SU S. Inhibitory effects of CaO/Fe2O3 on arsenic emission during sewage sludge pyrolysis[J]. Bioresour Technol,2016,218:134−139. doi: 10.1016/j.biortech.2016.06.075
    [12] FOLGUERAS M B, MARÍA DÍAZ R, XIBERTA J. Sulphur retention during co-combustion of coal and sewage sludge[J]. Fuel,2004,83(10):1315−1322. doi: 10.1016/j.fuel.2004.01.015
    [13] 程运, 吕文婷, 贾纪强, 张基栋, 卜昌盛, 张居兵, 王昕晔. 水蒸气对高岭土高温吸附铅的影响[J]. 燃料化学学报,2020,48(11):1327−1334. doi: 10.3969/j.issn.0253-2409.2020.11.006

    CHENG Yun, LÜ Wen-ting, JIA Ji-qiang, ZHANG Ji-dong, BU Chang-sheng, ZHANG Ju-bing, WANG Xin-ye. Effect of water vapor on high temperature adsorption of lead in kaolin[J]. J Fuel Chem Technol,2020,48(11):1327−1334. doi: 10.3969/j.issn.0253-2409.2020.11.006
    [14] 温武斌, 赵磊, 秦宁, 李治尧, 李贝贝, 沈凯, 张亚平. 改性凹凸棒石对高温炉内PbCl2蒸气的吸附研究: 实验和理论计算[J]. 燃料化学学报,2022,51:1−13.

    WEN Wu-bin, ZHAO Lei, QIN Ning, LI Zhi-yao, LI Bei-bei, SHEN Kai, ZHANG Ya-ping. Study on the adsorption of PbCl2 vapor in high-temperature furnace by modified attapulgite: Experimental and theoretical calculation[J]. J Fuel Chem Technol,2022,51:1−13.
    [15] CHEN D, HU H, XU Z, LIU H, CAO J, SHEN J, YAO H. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chem Eng J,2015,267:201−206. doi: 10.1016/j.cej.2015.01.035
    [16] YU S, ZHANG C, MA L, TAN P, FANG Q, CHEN G. Deep insight into the effect of NaCl/HCl/SO2/CO2 in simulated flue gas on gas-phase arsenic adsorption over mineral oxide sorbents[J]. J Hazard Mater,2021,403:123617. doi: 10.1016/j.jhazmat.2020.123617
    [17] 张秀霞, 周志军, 周俊虎, 刘建忠, 岑可法. O2氧化含氮焦炭释放CO和NO的量子化学研究[J]. 煤炭学报,2011,36(1):129−134.

    ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. Quantum chemistry study of CO and NO release from O2 oxide nitrogen-containing coke[J]. J China Coal Soc,2011,36(1):129−134.
    [18] XING J, WANG C, ZHANG Y, SI T, LIU X. A deep insight into the role of O2 on As2O3 capture over γ-Al2O3 sorbent: Experimental and DFT study[J]. Chem Eng J,2021,410:128311. doi: 10.1016/j.cej.2020.128311
    [19] WU D, LIU J, YANG Y, ZHENG Y, ZHANG J. Experimental and theoretical study of arsenic removal by porous carbon from MSW incineration flue gas[J]. Fuel,2022,312:123000. doi: 10.1016/j.fuel.2021.123000
    [20] HU P, WENG Q, LI D, LV T, WANG S, ZHUO, Y. Research on the removal of As2O3 by γ-Al2O3 adsorption based on density functional theory[J]. Chemosphere,2020,257:127243. doi: 10.1016/j.chemosphere.2020.127243
    [21] CLARK S J, SEGALL M D, PICKARD C J, HASNIP P J, PROBERT M I J, REFSON K, PAYNE M C. First principles methods using CASTEP[J]. Z Kristallogr Cryst Mater,2005,220(5-6):567−570.
    [22] SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK, S J, PAYNE M C. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J Phys Condens Matter,2002,14(11):2717−2744. doi: 10.1088/0953-8984/14/11/301
    [23] PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B,1992,46(11):6671−6687. doi: 10.1103/PhysRevB.46.6671
    [24] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865−3868. doi: 10.1103/PhysRevLett.77.3865
    [25] DEAN J A. Lange’s handbook of chemistry[J]. Mater Manuf Process,1990,5(4):687−688. doi: 10.1080/10426919008953291
    [26] FAN Y, ZHUO Y, LOU Y, ZHU Z, LI L. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci,2017,413:366−371. doi: 10.1016/j.apsusc.2017.03.196
    [27] FAN Y, ZHUO Y, LI L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci,2017,420:465−471. doi: 10.1016/j.apsusc.2017.04.233
    [28] 邢佳颖, 王春波, 李顺, 黄玉林, 岳爽. O2、SO2对As2O3在W-Cu/γ-Al2O3催化剂表面吸附特性的影响: 实验及理论模拟[J]. 燃料化学学报,2022,50(10):1324−1330.

    XING Jia-ying, WANG Chun-bo, LI Shun, HUANG Yu-lin, YUE Shuang. Effects of O2 and SO2 on adsorption characteristics of As2O3 on the surface of W-Cu/γ-Al2O3 catalysts: Experimental and theoretical simulation[J]. J Fuel Chem Technol,2022,50(10):1324−1330.
    [29] 李岩松, 邓双, 胡红云, 董璐, 黄永达, 邹潺, 吴诗勇. 基于实验和密度泛函理论的NaHCO3吸附SeO2机理研究[J]. 燃料化学学报,2022,50(1):1−9. doi: 10.1016/S1872-5813(21)60136-6

    LI Yan-song, DENG Shuang, HU Hong-yun, DONG Lu, HUANG Yong-da, ZOU Chan, WU Shi-yong. Study on the mechanism of NaHCO3 adsorption of SeO2 based on experimental and density functional theory[J]. J Fuel Chem Technol,2022,50(1):1−9. doi: 10.1016/S1872-5813(21)60136-6
    [30] 闫广精, 王春波, 张月, 陈亮. H2O对SO2在CaO表面上吸附的影响理论研究[J]. 燃料化学学报,2019,47(10):1163−1172. doi: 10.3969/j.issn.0253-2409.2019.10.002

    YAN Guang-jing, WANG Chun-bo, ZHANG Yue, CHEN Liang. Theoretical study on the effect of H2O on the adsorption of SO2 on CaO surface[J]. J Fuel Chem Technol,2019,47(10):1163−1172. doi: 10.3969/j.issn.0253-2409.2019.10.002
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  137
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 修回日期:  2022-12-21
  • 录用日期:  2022-12-27
  • 网络出版日期:  2023-01-10
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回